
Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational
purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

A Conformiq White Paper

Why Automate Test Design?
The number of software applications, customer service portals, device types, and platforms has reached an all-time

high. The need for reliable and efficient testing methods is more critical than ever before. Testing complexity and

requirements are growing exponentially. Yet, many of today’s testing environments continue to use test design and

test execution methods, dating back 20 years or even more. Businesses refusing to seek out and implement next

generation testing techniques run the risk of extinction by their competitors who are. Test automation has been

primarily focused on automating test management and test execution. Test design still remains largely a manual

activity. By also automating the test design process, functional testing efforts can be significantly reduced while at

the same time the quality of the testing can be increased. In this paper we will compare and contrast the primary

testing methods and the benefits of automating your test design.

Traditionally, test automation has been mainly

focused on automating test management and test

execution. Unfortunately, test design often remains a

manual activity. The test design itself concerns

making decisions regarding:

 What to test and what not to test

 How to stimulate the system and with what

data values

 How the system should react and respond to

stimuli

Therefore, test design is a separate task from test

execution. It is done before executing tests against

the system.

Even today, automated tests are often created and

executed only for regression – not to find defects in

the new functionality. Traditional and manual test

design and manual test execution are still prevailing

approaches for testing new functionality.

By also automating the test design, testing efforts can

be significantly reduced, while the quality of the

testing can be increased at the same time.

Manual Testing Process

In order to see and understand why test automation

is valuable and increasingly necessary, let’s first take a

look at the manual testing process Manual Testing is

the earliest form of testing, but it’s still widely used

today.

Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational
purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

The test design shown is done manually based on

informal requirements documents. The test designer

goes through the requirements document and

manually creates test cases for testing an

implementation that is based on the same set of

requirements.

The output of the manual test design step is a

document that describes the desired test cases. With

the test cases, test execution is done manually. A

manual tester follows the steps of the test cases and

interacts directly with the SUT (System Under Test,

i.e., the software to be tested) by comparing the

values of the SUT output with the ones expected,

finally recording the test verdict.

In order to carry out test design, the test designer

needs to possess expert knowledge about the SUT

and needs to have test design strategy skills. Manual

test execution requires less talent, but the ability to

follow the steps of the test cases and knowledge

about how to interact with the SUT are vital.

The main benefit of the manual testing approach is

that it’s easy to start with and the initial cost is low.

However, as everything is done manually, there are

numerous shortcomings that can be divided into two

groups – first, the ones related to test execution, and

second, those related to test design.

When looking at shortcomings of the test execution

side, the biggest and most severe issue is that there is

no automated regression testing, meaning that the

whole process needs to be repeated when the system

changes. This quickly becomes an error-prone and

time-consuming activity. In fact, the process is so

costly and time consuming that it often forces teams

to cut corners and sacrifice the quality of their testing.

The second set of problems stems from the fact that

test design is done manually. Aside from the time

factor, the results using manual test design are

difficult to reproduce. Because everything is done

manually, there is no systematic way to understand

functional coverage, it is difficult to judge the

progress of testing and also, the quality and coverage

of the produced test cases. There is no automatic

way to link the requirements, so requirement

traceability and coverage is either omitted or

established manually.

In short, the manual testing process simply cannot

scale. As such, manual testing processes are

increasingly unable to meet the demands associated

with today’s testing realities.

Record And Playback

A purely manual testing process can be improved by

automating test execution. The record and playback

method attempts to reduce the time and cost of test

re-execution by recording the interactions with the

SUT during the first test execution session and then

enabling a playback of the recorded test scripts so

that they can be re-executed at later time.

There are two types of record and playback tools.

With the first, the user manually executes the test

cases against the SUT, recording the steps for reuse.

In the second, the operation of the as-built system is

captured and test cases are generated to test it.

Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational
purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

Initial test execution is a similar activity to the one in

a completely manual testing process – the difference

being that now the interactions with the SUT are also

recorded. When the system changes, we actually

have something that we can try to run against the

system – the recorded test scripts.

As with the manual testing process, the record and

playback approach is easy to use and the initial cost

can be low. As the interactions are recorded, one can

trivially replay the recording to allow for re-execution

of the test scripts for “free.”

The main problem with applying record and playback

to automate the re-execution of the tests is that it is

extremely fragile with any changes in the SUT. This

inability to adapt to small changes in the SUT often

forces test designers to re-record test scripts when

there is a small change in the SUT, creating a huge

maintenance problem. The problem is so severe that

these solutions are often abandoned after a couple of

new revisions. Some of the record and playback tools

try to alleviate this problem by enabling the elevation

of the level of abstraction of the recorded test scripts

and allowing one to make changes to them. For

example, you can use and create placeholders in the

recorded scripts which then can be filled during

execution from a data table.

The second record and playback method overcomes

many of these issues by automatically capturing the

system operation every time it is rewritten. These

tools execute the application capturing the operation

and generating test cases to test this operation.

However, the big issue with these is that the test

cases just test the “as-built” application. At this point,

it is too late to make design changes, but even more

importantly, this method only tests that the

application works as it was developed – not how it

was intended according to the specification, which

might be a significant difference.

Although record and playback aims to address only

the problem of re-executing tests, it suffers from the

same shortcomings as the manual testing process.

In practice, record and playback is not an attractive

approach for addressing test automation because it

delivers only limited efficiency gains over manual.

Scripted Testing

In a scripted testing process, automating the writing

of test scripts solves the test execution problem.

Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational
purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

Instead of directly interacting with the SUT, test

designers write a collection of executable test scripts,

each containing one or more test cases. These test

scripts are automatically executed against the SUT.

They stimulate the system with tester selected input

values. Test scripts can be implemented in many

scripting or programming languages and then

executed on a framework that can read scripts in the

chosen language. The test execution tool records

output values, compares observed values against the

tester created expected values, and creates a test

verdict.

However, since test scripting is a programming task,

test designers need to possess or develop additional

skills beyond the skills required for manual test design

and test execution.

As test execution is automated using test scripting,

the initial testing can be run by using the automated

scripts. Regression testing can also be done for “free”

by simply re-executing the test scripts.

One of the biggest shortcomings of this approach is

that scripting is a complex activity that requires a lot

of time and effort. But what is even worse is the

maintenance problem that scripted approaches have.

This stems from the fact that test scripts need to be

updated not only when requirements change, but

also when implementation details change. How much

time and energy is then spent on maintenance

depends on the abstraction level of the test scripts.

And, again, because test scripting requires a certain

level of programming knowledge, implementing

nicely abstracted test scripts demands some

advanced skills from the test designer.

Although scripted testing focuses on addressing the

test execution automation problem, it suffers from

similar shortcomings as the manual testing process,

including the risks and costs associated with the

manual test design, ad hoc coverage, and manual

traceability.

Keyword Driven Testing

In order to overcome the maintenance problem

introduced by scripted testing, the abstraction level of

the test cases can be elevated using keyword driven

testing.

The main idea of this process is to express the test

cases in as abstract a form as is possible, while still

providing enough details so that they can be readily

executed against the real system.

In data driven testing or data table testing, there are

sets of abstract test cases that do not fix the data

values. Instead, the data values are read from a data

table during test execution. This allows for the reuse

of the same test scripts for testing the system with

multiple data values. This will obviously reduce

maintenance efforts.

In keyword driven or action word testing, this

concept is taken a bit further and it abstracts the test

steps in the test cases by introducing keywords or

action words that correspond to some well-defined

fragment in the test scripts. This allows non-

programmers to implement test cases simply by

constructing them using these action words. The

action words are mapped to actual test code by a

Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational
purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

keyword driven testing framework, and the test code

needs to be implemented by engineers who can do

programming.

The main benefit of keyword driven testing is that it

allows engineers to work at more abstract and

concise level. Also, non-programmers can implement

the tests. As the keywords map to executable code

fragments, keyword driven testing offers the same

benefits as scripted testing, namely automatic

execution of the test cases and automatic regression

testing. An additional benefit is that the maintenance

efforts are reduced compared to scripted testing

because of the possibility of more reuse and

abstraction.

However, the test data and test oracles are still

designed manually. In addition, test coverage with

respect to requirements and traceability, like with all

the other approaches introduced so far, needs to be

completed manually.

The Next Step...

So what is the next step? How should we solve the

problems with the current test automation solutions?

All these approaches rely on manual test design, and

therefore none of them guarantee systematic and

repeatable coverage of the system behavior. This

non-repeatability is a huge risk. With manual test

design, it is difficult to assess the quality of testing

efforts, which often leads one to evaluate the quality

and progress of the manual test design process using

fairly meaningless metrics, such as number of test

cases or number of hours spent on testing.

At the same time, manual test design is also a very

expensive process - especially when there are

changes in the requirements. In practice, test

designers are forced to manually analyze each test

case individually in order to see which test cases need

to be updated, which need to be removed, and which

need to be added in order to fill the coverage gap

when there are changes in requirements. This

decreases productivity and increases the risk of error.

Finally, the requirement tracking in all of these

approaches is done manually.

Automating the Test Design
Traditionally in the test design phase, test designers

and Subject Matter Experts (SMEs) form an

understanding of the system using specification and

requirements. In essence, they form a mental model.

This mental model is not one of tests, but of the

system itself. In a purely manual test design process,

this mental model of a system is turned into test

cases in the mind of the test designer. This is an

implicit, creative process that is not reproducible and

is bound to the ingenuity of individual engineers. If

you lack sufficient talent for doing good test design,

you’re out of luck as a tester and for the project.

As test engineers form a mental model of a system, it

makes it seem that test design can be automated by

making this model explicit, for example, by expressing

this mental model in a form that is understood by a

computer which could then generate test cases from

this explicit model.

Model Based Testing

Now when we have a computer readable model, we

can apply model based testing to the problem of test

design automation. Model based testing is currently

trending and can provide a variety of approaches. In

loose terms, model based testing is anything that is

based on computer readable models that describe

some aspects of the system to be tested in a format

and with accuracy that enables either completely

automatic or semi-automatic generation of test cases.

The three main approaches to model based testing

are 1) graphical test modeling, 2) environment

model driven test generation, and 3) system model

driven test generation, There are others but, these

three are the main approaches.

All model based testing approaches listed above can

produce the same end result – that is, they can all be

used to generate executable test cases and test

Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational
purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

documentation. However, the key factor is what the

users need to do in order to get those tests out.

Graphical Test Modeling

The graphical test model is the simplest of the

approaches listed above. It is nothing more than

modeling the test cases in a graphical notation.

Graphical test case modeling aims to provide similar

benefits to keyword driven testing by elevating the

level of abstraction, which enables more reuse,

reduces maintenance costs, and increases

productivity. The tools then turn these abstract

graphical test cases into executable test scripts.

The models that capture graphical test cases are easy

to understand and the complexity to create them is

low. Therefore, the approach may appeal to non-

programmers, as graphical test case modeling does

not require programming skills, which is quite often

expected for other model-based testing approaches.

However, as the test cases are modeled, the only

thing that we are actually automating is the creation

of executable test scripts. Therefore the value

proposition is similar as with keyword driven testing.

No test cases are created beyond what the modeler

thinks of and, when the design changes, the manual

effort of remodeling is the same as the original effort.

Environment Modeling

Environment, use case, or usage models describe the

expected environment of the SUT. These models

describe how the system under test is used and how

the environment around the system operates. These

models represent the tester – not the system that is

being tested. The models include testing strategies

(the input selection) and hand crafted output

validators (test oracles).

For example, if we are testing an application running

on a handheld mobile device, the environment

constitutes the user who uses the device and the

radio network. An environment model describes how

the environment –the user and the network – operate

with respect to the application, including the details

about testing strategies and output validators.

This style of modeling is similar to the traditional

thinking of testers since these models essentially

capture the operations of the tester. The models,

however, are more complicated than simple graphical

test case models because of the extra expressivity.

Because test generation algorithms for environment

models are well known and easy to implement, the

tools are relatively robust and efficient. There are a

lot of different tools available, both free and

commercial, and companies often even create their

own tools for generating tests from environment

models.

These tools eliminate the need for manually writing

test scripts, and some of the tools even allow for the

annotation of the model with requirement links,

enabling automatic tracking of requirements, which is

a highly important and valuable feature. The

fundamental problem is that the test design is still left

as an exercise to the test engineer. The test engineer

needs to manually describe the testing strategies and

the test oracle, that is, the stimuli that is needed to

send to the system and the expected output from the

system under test.

System Modeling

The third main approach to model based testing is

called system model driven test generation. Here the

idea is that the model represents the actual, desired

behavior of the system itself. This means that the

system model is the mental model that test engineers

form, while going through the requirements

documentation now made into an explicit model. The

model describes how the system should work – not

how it should be tested. For a moment, let’s go back

to our previous example about an application on a

handheld device where the application operates with

a user of the application and the radio network. As

opposed to other approaches in system modeling, the

focus is on the behavior of the application itself. We

do not focus on how the user utilizes the device or

Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational
purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

how the radio network operates. Instead, the focus is

on the correct behavior of the application on the

device. We model the behavior of the application on a

high level of abstraction and then leave the problem

of test design to the computer. The computer is

responsible for figuring out how the environment

outside the application operates. The computer

figures out how the user should stimulate the

application, what kind of interactions should be on

the interface of the radio network, and what kind of

precise output the application should give to the user

– the test stimuli plus the test oracle. Therefore, in

the case of system modeling, the computer generates

an environment that drives the real system.

There are two, somewhat contradictory goals when

making a system model. The first is that the model

should be smaller and more abstract than the real

system – otherwise it takes too much time and money

to describe one. It should focus on the key aspects

that that are to be tested and omit many of the

details of the SUT. The second goal is that it needs to

be accurate enough to capture the details that need

to be tested.

Creating a system model is a more straightforward

and less error-prone process than modeling the test

cases themselves or creating an environment model.

This is because the mental step involved in designing

the testing strategies and oracles is omitted. The

modeling process can be compared to a translation

problem – the goal is to translate the specification

and/or requirement documents into a computer

readable format. Once that is done, the model is very

easy to update when requirements change. This type

of model is also much easier to understand by

stakeholders and to use as reference for developers.

This is a huge time saver for test maintenance.

Conclusion

As we have seen, traditional test automation focuses

mainly on two aspects: test management and test

execution. With these solutions, the process of test

design – the process of deciding how to test, what to

test, and what not to test – is a manual activity.

Manual test design introduces many risks and takes a

lot of time, especially when requirements change.

System model driven test generation is an effective

and complementary way of addressing the

shortcomings of existing test automation.

First, it automates the design of functional test cases

to reduce the design cost and to increase the quality.

Second, it reduces the maintenance costs of tests.

Lastly, it automatically generates coverage reports

and traceability information from requirements to the

tests and back.

System model driven test generation offers significant

benefits in terms of improved quality, improved SUT

fault detections, improved traceability, improved

maintenance, improved model reuse, reduced cost

and time, and improved requirements.

MBT is a more sophisticated approach to testing than

earlier generations of testing tools. Operating with

these tools requires a different mind and skill set than

more traditional testing tools. However, the results of

using this process show that proper training and

experience, along with a willingness to make the

change succeed, can overcome these hurdles.

So once you pass these initial hurdles and start to see

the benefits, you will never go back.

The author of this paper, Kimmo Nupponen, has

been developing automated test design software

for over ten years. He understands what is really

needed for real world use and the “under the

hood” differences between MBT tool engines. He

is the Chief Scientist at Conformiq.

Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational
purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

www.conformiq.com

4030 Moorpark Ave
San Jose, CA 95117
USA
Tel: +1 408 898 2140
Fax: +1 408 725 8405

Westendintie 1
02160 Espoo
FINLAND
Tel: +358 10 286 6300
Fax: +358 10 286 6309

Stureplan 4C
SE-11435 Stockholm
SWEDEN
Tel: +46 852 500 222
Fax: +358 10 286 6309

Maximilianstrasse 35
80539 Munich
GERMANY
Tel: +49 89 89 659275
Fax: +358 10 286 6309

29 M.G. Road Ste. 504
Bangalore 560 001
INDIA
Tel: +91 80 4155 0994

v0715

http://www.conformiq.com/

