
Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational

purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

A Conformiq White Paper

Comparing Automated Test Design

Methods
How automatic is your automated test design process? There are three primary methods used in automated test

design tools. They all deliver improvements in the test design process, but there are significant engine

differences that you should fully understand prior to selecting your tools. In this paper we will compare and

contrast these methods and discuss the limitations and benefits from each.

The three approaches to automated test design all

begin with different approaches to modeling. The

perspective used may not seem much different or

very important, but it is critical to the internal test

design engines used in the different automated test

design tools. The type of modeling dictates the tool’s
ability to convert that model into test cases and many

associated capabilities that are important to deliver

the maximum user benefits.

Comparison of the Methods

The three types of modeling methods for automating

test design are system model driven, graphical test

case design, and environmental model driven. To

briefly capture the similarities and differences

between the three main approaches of model based

testing, take a look at the following table. Key

features that highlight important capabilities needed

to deliver maximum benefits from the transformation

to test design automation are listed and the

differences each approach delivers are compared.

The more automated or, to spin the word slightly to

allow you to better differentiate between the uses of

the term automation, the more automatic the tool’s
capabilities, the greater are its benefits.

System model driven

Graphical test case

design

Environment model

driven

What is modeled The correct behavior

of the SUT on a high

level of abstraction

The individual test cases The testing environment

and its logic

How input data is

selected

Automatically User defines it A testing strategy—
including input

selection—is embedded

as part of the model

Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational

purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

How the test oracle

(output validation)

works

Automatically Output data at execution

time is compared to the

output data predefined

in tests

Explicitly implemented in

the model

Technical complexity of

models

High Low High

How tests are traced to

requirements

Automatically Manually Automatically

Does it support

composition

(combining and reusing

model components)

Yes Usually no, because the

actual concrete test data

would need to match

exactly

Usually no, because the

testing strategies are not

compositional

What tasks it eliminates Design test cases

Maintain test cases

Write executable

tests

Maintain requirement

traceability

Write executable tests Write executable tests

Maintain requirement

traceability

What are the benefits

over multiple release

cycles

High:

Model components

can be shared and

linked together

Model maintenance is

fast when

requirements change

Low:

Individual test cases can

be shared (only) if they

can be exactly reused

Test maintenance

focuses on individual

test cases

Between the two other

approaches:

Testing strategies and

oracles need to be

maintained by hand

In system model driven testing, we model the correct

and expected behavior of the system under test on a

high level of abstraction, which undeniably requires

some technical skill. However, there is no need to

design test inputs and outputs manually for they are

automatically derived and generated. In graphical test

case design, one models the test cases, which makes

modeling easy, but offers no automation of input or

output data selection. The user needs to do this

design manually. Environment model driven

approaches model the expected environment or the

usage of the real system, which is also a more

technically complicated task than, for example, the

graphical test case design, which allows for the direct

embedding of testing strategies to the model, but still

leaves output validation as an explicit task for test

designer.

Requirement traceability is automatically created

when using system model or environment model

driven approaches, provided that the model is

annotated properly with requirement links.

One of the fundamental differences of the three

approaches is that only system models are

compositional, meaning that only the system model

driven approach allows one to construct a set of

models that are combined together to form a model

of a larger system. We will shed some extra light to

this topic later in this presentation.

Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational

purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

By applying the graphical test modeling approach, the

task of writing test scripts manually can be

eliminated. When adopting the environment model

driven approach, the task of establishing and

maintaining requirement traceability links is manual.

Only the system model driven approach eliminates

the need for conducting test design explicitly and test

case maintenance. With the other approaches, these

two tasks need to be done manually.

Finally, if we look at how the three different

approaches work with projects that target not only

one revision of the system but many, we see that the

graphical test case modeling approach suffers from

similar shortcomings as the traditional test

automation solutions. The individual tests need to be

maintained. While the high abstraction level allows

for the same tests to be reused when there are small

changes in the interface of the SUT, test designers are

forced to manually analyze each of the test cases

individually in order to see which test cases need to

be updated, which need to be removed, and which

need to be added in order to fill the coverage gap

when there are changes in requirements. Test

maintenance is a major concern with graphical test

case modeling. At the other end of the spectrum is

system modeling where the benefits of using system

models are high. This is because the individual model

components can be shared and linked, enabling

model reuse, but also because changes to the

requirements are easy to reflect in the model.

Environment model driven approaches are in-

between these two extremes, forcing the test

designer to maintain test strategies and oracles

manually.

System Model Driven MBT Process

There are certain changes in the testing process that

happens when system model driven MBT is put into

use.

First, instead of manually designing test cases, test

designers write an abstract model of the SUT. They

essentially take the specification or requirement

document and encode it into a model that the test

generation tool can understand. Typically this format

is partially graphical and partially textual.

For example, in the case of Conformiq Designer™

used often for testing embedded software, the model

is defined using Java-like textual syntax and optionally

using UML state charts and class diagrams or using

the new Conformiq Creator™ modeling option used

for testing IT and enterprise software; activity

diagrams and interface actions are used to define the

model. An important part of the modeling is to

annotate the model with requirement identifiers to

clearly show and document the relationship between

the model and the functional requirements.

The most advanced MBT tools allow import of test

cases saved from record and playback execution or

from existing manual test cases themselves. The

import from recorded test cases accelerates model

creation while model generation from manual test

cases requires some additional manual effort to

normalize the tests and eliminate duplicates. This

capability enables brown-field projects to fully

leverage MBT benefits.

Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational

purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

The next step, before tests are generated, is the

selection of test generating heuristics. This is an

important part as there may be an infinite number of

possible tests for the tool to choose from. Therefore,

we must state our goals for the test suite that the tool

should produce.

Once the test selection heuristics have been defined,

test cases will be automatically generated.

The output of test generation is a collection of

abstract tests that are sequences of operations from

the model. The other two important assets that are

automatically generated are the coverage report and

traceability matrix. The coverage report provides

valuable information about how well the generated

test cases cover the model with respect to the

coverage criteria that was selected. This coverage

report is based on the model coverage, not the SUT.

After all, at this point, the tests have not been

executed against the SUT. The coverage report

provides information about the quality of the test

suite and helps to identify model parts that are not

well tested and covered. The traceability matrix, on

the other hand, provides the linkage between the

model and the requirements.

The third step of the MBT process is to export and

concretize abstract test cases into executable and/or

human readable formats. Often this happens via

some translation or transformation tool. For example,

with Conformiq Designer and Creator, a scripting

backend is attached to the Conformiq project that is

used to export abstract test cases in the desired

format, whether it is a directly executable script or

human readable documentation format or both.

Test execution happens by using a test execution

environment of your choice. In the case of manual

execution, the abstract test cases are turned in to

manual test plans and detailed test steps for manual

test execution.

Finally, test execution results are evaluated using the

test execution tool logs. An alternative approach is to

import the test results directly back to the MBT tool

so that the test execution result analysis can be done

on the model level, which makes it significantly easier

and more efficient to figure out the problem. This

step is similar to traditional testing processes in which

the goal is to determine the cause of the fault in a

case of a test failure. The reason why the test fails

may be because the SUT was implemented

incorrectly, the model was crafted incorrectly, or the

requirements were incorrect in the first place. The

tester needs to decide the cause.

Complementary Solution

As the previous section suggests, MBT should not be

seen as a competing solution with existing test

automation solutions, but as more of a

complementary one. Since MBT aims to address the

shortcomings of the more traditional approaches, it

can leverage existing investments of test automation

and can be seen as an additional and highly valuable

piece of the entire SDLC automation pipeline. MBT

can be seamlessly integrated with existing processes

and tools, both on the modeling and test export

backend sides. On the modeling side, requirement

management tools can be integrated to enable

checking for the completeness of requirement

annotations in the model with respect to the

requirements identified in the requirement

management tool during the specification and

requirement analysis phases. On the backend side,

there are many different integration options with test

execution tools, test management tools, and test

documentation tools.

System Modeling Benefits

The system model driven approach relieves the user

from designing, validating and maintaining individual

test cases. This is due to the fact that the test design

problem is fully automated, allowing users to focus on

the correct behavior of the system, instead of on

many individual tests.

Improved Quality

The first benefit of automating test design is the

Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational

purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

improved quality of the test cases. The automated

approach to test design lowers the risk of having

incorrect, missed and redundant tests. A test designer

or engineer can accidentally miss a test case that is

dictated by the requirements, for example with an

error handling case, a limit value of a data parameter

or an expiration of a rarely activated timer. The

algorithmic (system modeling) approach to test

design eliminates randomly incorrect tests. There are

fewer missing tests because the algorithm does not

accidentally miss corner cases. With this modeling

approach there are also fewer redundant test cases

because the resulting test sets are optimized

rigorously by the computer and checked for their

importance.

As tests are always related to the requirements, the

quality of the generated test suite is always

measurable and what is not covered is known.

Finally, the whole process itself is systematic,

consistent, and repeatable adding more benefits.

Improved Fault Detection

The core purpose of doing testing is to find flaws.

Lowering the risk of incorrect and missed tests

increases the fault detection capabilities of MBT. The

tools that implement the system model driven

approach are constructed so that they optimize the

tests rigorously for coverage, non-redundancy, and

test efficiency.

The second aspect is the ability to generate different

kinds of test suites for different purposes that all

target different aspects of the system operation. It

selects slightly different test selection criteria and lets

tools generate new test suites. All these features

make MBT capable of producing very good quality

tests that find defects that are difficult to otherwise

find using other approaches.

This is also what we see in practice. Numerous

practical experiences, case studies, and proofs of

concept show that MBT is as good as or better than

manual testing in finding defects. When the system

gets more complicated, the rigorous and

comprehensive test design task becomes too

overwhelming a task for the human brain and

computers are much better for this effort.

Reduced Cost and Time

Applying system model driven MBT can also reduce

the time and costs. This stems from the fact that

creating a system model is straightforward and less

error prone than describing the tests themselves. The

user makes the mental model explicit instead of

inventing test cases based on it. This increases the

quality of the end result while also reducing the time.

One model can be used to generate multiple different

test suites for different purposes. One essentially gets

all the different test suites for free by using a single

model.

The time saved during the model maintenance phase

is particularly important because model maintenance

is significantly easier and more efficient than

maintaining individual test cases. We will talk more

about maintenance aspect later in this paper.

Scalability issues are something that Conformiq takes

very seriously and invests a lot of time into the

research and development of more efficient

algorithmic approaches to automated test design. The

key need here is to speed the test generation time

since you cannot tell if you have good tests and

proper coverage until the test cases are generated. If

the test cases are selected manually or modeled as

use cases, the engine needs little time because the

user has already done the test optimization work.

However, if you are using the system model

generation approach used by Conformiq, the design

selection is fully automatic without user intervention.

Thus the engine needs to do the heavy lifting of

determining the optimal minimum number of test

cases to cover all test points using the selected test

design algorithms. To accomplish this and effectively

handle large (read “real world”) models, Conformiq

has designed its engine to automatically split a model

Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational

purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

across all available processors, be they local or on

multiple servers, to deterministically generate test

cases quickly. The splitting is easy – making it

deterministic is hard and Conformiq is unique in

delivering this important capability.

The importance is quickly understood by an example.

Since correct test generation is based on the model,

the model must be changed and test cases

regenerated until it is accurate and complete. This is

an iterative process that may take many revisions. If

each test generation takes one hour rather than 10

minutes, it is easy to recognize the efficiency gained

from multicore processing.

Finally, the test failure analysis is often easier and

faster with system model driven MBT. For example,

the path that the test took through the model can be

inspected to provide more understanding of the

circumstances under which the problem was

triggered. In some cases, it is possible to import test

execution results back to the MBT tool for further

analysis. MBT tools are also capable of generating the

shortest possible path to the test failure, making the

test analysis simpler. In addition, tests are generated

in a consistent fashion so the failure reports are also

more consistent. This additional information makes it

easier to understand the tests, the reasons for their

failure, and most importantly, to find and fix the

problem.

Improved Traceability

Traceability is the ability to relate tests to the model,

tests to the test selection criteria, and tests to the

requirements.

Requirements Traceability

This means tracing functional requirements

throughout system design and test. This test design

perspective allows for the explanation of how test

cases and individual test steps are related to those

functional requirements that have been articulated.

Implementing requirements traceability has many

benefits:

1) It helps ensure that none of the functional

requirements have been ignored in test case

design.

2) It helps explain tests and gives rationale as to

why tests were generated. Requirement

traceability helps in understanding tests

because tests are linked to the requirements

they are supposed to test.

3) It helps in post-execution analysis of tests to

pinpoint which feature was actually

malfunctioning.

Maintenance

Maintenance becomes an important factor for

projects that target not only a single revision of the

system, but many revisions. Traditionally when

requirements change, a significant amount of effort is

required to analyze and update existing test suites. It

is necessary to go through every test case and see

whether or not the test case and the associated data

are still valid, whether they should modify them in

some way, or whether they should be eliminated

altogether. In addition, it is necessary to decide if new

tests for bridging the coverage gap need to be

introduced or not and with what kind of test cases.

With the system model driven approach,

maintenance efforts are significantly reduced. This is

because the model is typically smaller than the test

suites and because the requirement updates can often

be easily reflected into the model.

After the updates to the model have been made, a

new test suite can be automatically generated. When

regenerating the test suite, the tools automatically

establish an incremental traceability and directly

report which of the test cases were removed, which

were added, and which determined to be redundant.

Prospect of Reuse

Related to the model maintenance, one of the

benefits of system model driven testing is derived

from the ability of reuse. Reuse, also in the context of

test generation, offers great rewards by saving time

Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational

purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

and money by reducing the amount of redundant

work.

The possibility for reuse exists because system models

are compositional and because system models are

often expressed with languages that offer direct

support for reuse. For example, Java-like notation of

Conformiq Designer™ allows for the reuse of models

via concepts familiar from object-oriented paradigms,

such as inheritance, delegation, communication, and

parameterization.

Model composition is an important feature that is

only available with system models because it allows

for the reuse of the same models for generating

function, component, system, and end-to-end tests.

Model composition means that you can take multiple

smaller models and combine them into one bigger

model. This allows you to first model and test smaller

features independently and then later combine the

models and test that the features work as expected

when combined together. It also allows for reuse of

models as reusable testing IP, thus enabling a model

of the system or application to be easily and quickly

changed to match new requirements or customers.

Model composition also enables early detection of

interoperability issues where components, even if

independently operating correctly, don’t work
correctly when connected together. Interoperability

can be tested essentially for free when the models of

the components are connected together.

Improving Requirements

Finally, one possibly unexpected benefit of model

based testing is that the mere act of modeling the

system behavior often improves the quality of the

requirements. A lot of defects can be spotted in the

model of the specifications and requirements before

even writing a single line of code. The requirements

often contain ambiguities, omissions, and

contradictions. As one writes a model of the system

behavior, many questions regarding the requirements

are raised, so the modeling process can expose a lot

of issues with the requirements.

This should not come as such a surprise since system

modeling involves the development of a small high-

level prototype of the real system and it is known that

prototyping is an efficient way to find requirement

bugs.

Benefits Come with a Price…

As with any disruptive new technology, there are

some obstacles that hinder deployments. These

obstacles, luckily enough, can be overcome with

training and experience.

The first practical issue is that system modeling

requires a different skill set than manual test design.

System models are abstract representations of the

system operation in an executable form. With

Conformiq Creator, the test designer or SME needs to

understand the system but only needs to use existing

components and connect them together to create the

model. However with Conformiq Designer the models

are really small programs, so the test designer must

be able to abstract and design programs, which

require programming skills. There are ways of

minimizing the amount of “coding” that is needed to

craft a model, but highly complex embedded software

applications are computational processes and, the

most efficient way of describing a computational

process is in terms of a programming language. This

should not be seen as a shortcoming or a

disadvantage because it provides a powerful way of

describing a system in a concise and sound fashion.

Often specifications and requirements are written in

an informal notation that can be naturally translated

into program or model code. As one example,

business rules are often described in pseudo code,

decision tables, or trees. For another example, take a

protocol specification, which also contains many state

charts and pseudo code fragments, all which can be

quite easily translated into “code” for a Designer

model. AUTOSAR specifications are state charts with

English notation making them very straightforward to

model.

Test designers may feel alienated when modeling

system behavior because it does not involve the same

Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational

purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

thinking process that they are used to. You don’t
really think about testing when you are modeling, so,

in a sense, the role of the tester moves a bit closer to

the developer or designer role. This, especially with

senior test engineers and designers who have worked

for long time on more traditional approaches to

testing, manifests itself in a way that they will use

system model driven approaches to capture the test

scenarios and test cases themselves, instead of

modeling the expected system behavior. There is

nothing wrong with using the tools in this way, but

there are more benefits in adjusting to the new way

of thinking and to the paradigm shift that system

modeling introduces, ultimately by modeling the

correct and expected system operation instead.

Otherwise, the great benefits that system modeling

has to offer may not be realized and one needs to

settle on only the more limited benefits that the

environment modeling approach delivers.

A pragmatic issue that test designers run into is the

limitation of the tools themselves. This is due to the

fact that test generation from system models is an

extremely difficult task, therefore the test designers

and engineers may devise models that are beyond the

capabilities of the tools and the tools simply choke

when given such a model. Therefore, in certain cases

test designers may need to gain extra knowledge

about the tools and the algorithms that are used in

order to figure out how to avoid developing a model

that kills the tool.

Conclusion

All test design automation tools deliver benefits.

However, when making the significant transformation

from manual test design to using automated test

design tools, it is the best time to decide the future of

your testing process and select the most appropriate

tool that best meets your near and long term needs.

Of all the different test design automation methods,

system model driven test generation offers significant

benefits in terms of improved quality, improved SUT

fault detections, improved traceability, improved

maintenance, improved model reuse, reduced cost

and time, and improved requirements.

Thus environment modeling helps automate the test

design generation while system modeling

automatically generates the test design. The impact

of this difference becomes quite large in practice.

The author of this paper, Kimmo Nupponen, has

been developing automated test design software

for over ten years. He understands what is really

needed for real world use and the “under the
hood” differences between MBT tool engines. He

is the Chief Scientist at Conformiq.

Conformiq White Paper Series – Not All MBT Tools are Created Equal

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational

purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Creator, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

www.conformiq.com

4030 Moorpark Ave

San Jose, CA 95117

USA

Tel: +1 408 898 2140

Fax: +1 408 725 8405

Westendintie 1

02160 Espoo

FINLAND

Tel: +358 10 286 6300

Fax: +358 10 286 6309

Stureplan 4C

SE-11435 Stockholm

SWEDEN

Tel: +46 852 500 222

Fax: +358 10 286 6309

Maximilianstrasse 35

80539 Munich

GERMANY

Tel: +49 89 89 659275

Fax: +358 10 286 6309

29 M.G. Road Ste. 504

Bangalore 560 001

INDIA

Tel: +91 80 4155 0994

 v0715

http://www.conformiq.com/

