
Model-Based

Testing (WP7)

Dr. Christoph Steglich, Daimler AG

status meeting 13.12.2012

Model-Based Testing
Motivation

Status quo

• Increasing complexity („More and more features & services“)

• Rising variability („More and more specific adaptions“)

• Rapid development-cycles („More and more consumer products“)

Objective

• Ensure high product quality across all possible variations

Challenges

• Quick and precise determination what consequences changes have

• Systematic detection of mutual dependencies

• Understandable and clear presentation

Copyright automotiveHMI 2012

Model-Based Testing
Objectives & Schedule

WP7: Model-Based Testing

Efficient HMI test

methods

Testing

characteristics of

graphical user

interfaces

Effective

management of

complexity

Detection of errors at

early stages
Optimal coverage

WP7.1: HMI Test Requirements

WP7.2: Definition of Test Cases

WP7.3: Metrics and Coverage Criteria

WP7.4: System- & Test Model

WP7.5: Test Case Generation

WP7.6: Test Interface Definition

WP7.7: Test Environment & Evaluation

2011 2012 2013







ongoing

ongoing

Focus: Current Work

Copyright automotiveHMI 2012

WP7.4: System- & Test Model WP7.5: Test Case Generation

Failure Analysis Evaluation of

Test Case

Generators

Test Model

Defect Model

Methodology

Test Case

Generation

Focus: Current Work

Copyright automotiveHMI 2012

WP7.4: System- & Test Model WP7.5: Test Case Generation

Failure Analysis Evaluation of

Test Case

Generators

Test Model

Defect Model

Methodology

Test Case

Generation

P
re

s
e
n
ta

ti
o
n

D
e
m

o

Focus: Current Work

Copyright automotiveHMI 2012

WP7.4: System- & Test Model WP7.5: Test Case Generation

Failure Analysis Evaluation of

Test Case

Generators

Test Model

Defect Model

Methodology

Test Case

Generation

Failure Analysis

Copyright automotiveHMI 2012

Goal: Identification and Classification of typical GUI failures

• Take the failure pattern into account when developing the test

strategy

• Provides input for the methodology

– Helps to determine which data has to become part of the test model.

– Influences the way the test model has to be build so that the test cases

needed will be available through generation.

• Results will also be used for evaluation purposes

– Create a system model that exhibits a realistic failure pattern

– Check if all failures (quantity & category) are found by the generated test

cases.

Approach

Analyzed data basis

• More than 3000 failure reports (Audi, Bosch and Daimler)

• Representing a broad variety of contexts, such as

– System Under Test

– Test strategies

– Test personnel

– Test environments

• Clustering failure reports disjunctively

– ⅓ of data used to develop the basics of the taxonomy

– ⅔ of data used to fine-tune sub-categories

Classification requirements

1. Hierarchical structure

2. Min 2 and max 5 categories per level

3. Max 10% total percentage on lowest level

4. Class “To Be Categorized” (TBC) which is limited to 10%

Copyright automotiveHMI 2012

Results: Classification & Distribution

Top level follows the Model-View-

Controller design pattern

Model [here contents] (25.1%)

Holding the actual data

(e.g. text, icons, etc.)

View [here design] (5.8%)

Describing how the contents have to be

displayed

(e.g. position, color, font, etc.)

Controller [here behavior] (61.5%)

Any kind of logic in response to incoming

events

(e.g. menu option iteration, option

activation, etc.)

Copyright automotiveHMI 2012

Failure Analysis
Classification & Distribution

Percentage (total) 61.5% Percentage (total) 25.1%

Copyright automotiveHMI 2012

Focus: Current Work

Copyright automotiveHMI 2011

WP7.4: System- & Test Model WP7.5: Test Case Generation

Failure Analysis Evaluation of

Test Case

Generators

Test Model

Defect Model

Methodology

Test Case

Generation

Evaluation of Test Case Generators

Goal: Evaluate applicability of proprietary Test Case Generators

• A set of 9 Test Case Generators had been evaluated

• The assessment process had 2 steps

– First check of all products to choose the 2-3 most appropriate

– Detailed evaluation of the nominated products

• Evaluation based on a set of prioritized criteria

– Required Operating System

– Input Formats

– Test Case Generation

– Execution Support

– Required Tool Chain

– …

Copyright automotiveHMI 2012

CQ Designer Test Designer MBTsuite RT Tester

OS Linux und Windows

(x86 und x64)

Distributed generation

Linux und Windows x86 Windows

application (x64

Migration announced)

No multi core support

Linux und Windows

Multi core support

Distributed generation

Input Limited State Charts

and proprietary

scripting language

(QML)

UML (Behavior

models, Class- and

Object diagrams, OCL)

Hierarchical models

incl. Guards

Extensions of

functionality using

Python snippets

Hierarchical models

Extension of

functionality using first

order logic

Generation Element coverage

Usage probability

No adaption of

coverage criteria

Partial generation

Full path coverage

(depth-first search)

Code and branch

coverage

Execution Offline and Online

Tests

Graphical back tracing

of errors

Offline Tests

Graphical back tracing

of errors

Offline Tests

Graphical back tracing

of errors

Connection to

Hardware-In-A-Loop

execution environment

Tool Chain Enterprise Architect

IBM Rational or

Borland Together

Enterprise Architect Enterprise Architect

Conclusion • Infrastructure

• Code integration

• Use of Tools

established tools

• Price

• Code Integration

• Price

• Limitation of tool

chain

• Price & support

• Code integration

• Use of

established tools

• Generation cost

• Infrastructure

• Hardware focus

• Uncommon

Code

• No product yet

Evaluation Results (1/2)

Rhapsody ATG tedeso (MMBT) MaTeLo

OS Linux and Windows Windows XP or newer Windows, Linux,

Windows server

Input Rhapsody UML System model UML (class, package, use case,

activity, sequence charts)

Usage model

(Based on Markov chains)

Generation Model Element Coverage

& Model Code Coverage

Incl. cancelation timer

Path coverage, activity and

transition coverage, Round Trip,

happy path

Usage probability incl.

Transition coverage

Execution Offline Tests

Graphical back tracing of errors

No test case execution

(testbench optional)

No test case execution

Export and Analysis of results

Tool Chain IBM Rhapsody incl. Rhapsody

ATG Plugin

tedeso (+ Testbench) IBM Doors →

MaTeLo Requirements Library

→ MaTeLo Modell

Conclusion • Use of system models

• Input limited

• Problem error finding:

Test model / system

model

• Modular

• Fast generation

• Open API, adaptability

• Use Case oriented

• No state charts

• Connection to the

specification

• Usage model

• No plugins for

current version

Evaluation Results (2/2)

Focus: Current Work

Copyright automotiveHMI 2011

WP7.4: System- & Test Model WP7.5: Test Case Generation

Failure Analysis Evaluation of

Test Case

Generators

Test Model

Defect Model

Methodology

Test Case

Generation

Methodology:

Different for Audi & Daimler

Approach AUDI Approach Daimler

HMI Model already exists Development of a dedicated HMI Test-

Model

Model is used for system software

generation

Model is used for test case generation

exclusively

Model is developed and maintained by

system development team

Model is developed and maintained by

test engineers

Test execution based on HMI

system models including dynamic

system behavior

Test case generation based on a

dedicated HMI test model

Copyright automotiveHMI 2012

Approach
AUDI

• automated generation of HMI Paths covering specific system

features

• generated HMI Paths are extended by dynamic system behavior

models to be able to react on system runtime behavior (e.g. media

loading state or connected devices)

Copyright automotiveHMI 2012

Example:

generated Navigation Tree for

Car Module

Approach
AUDI

Copyright automotiveHMI 2012

• Dynamic Screen Detection- & Analyze- Module to observe System

Screens at runtime (derived from HMI-Specification Model)

• identifies current screen based on HMI Specification Model

• gives possibility to detect HMI deviations compared to the HMI

Specification Model

Approach
AUDI

• Test Environment Suite combines the generated HMI Path Models,

dynamic HMI Screen Detection- & Analyze- Module and the System

Behavior Models to run tests on the system

Copyright automotiveHMI 2012

Methodology

• Focusing behavior failures (Widget & Screen transition)

• Dedicated Test Model based on Exchange Format (WP3)

• Generated test cases are executed automatically

Copyright automotiveHMI 2012

Object Oriented State Machines are

used to create the Test Model

• Reactive aspects are captured using State Machines

– Handling of User- and Middleware-Events

• A set of classes describes the data fields and behavior of the

widgets (as basic building elements of the GUI)

– Such as Buttons and Menus

 Widget-Objects are instantiated and called as part of a State

Machine. Usually, they are assigned to a particular state.

State Machine

Objects Classes

Object Orientation

Widget

Behavior

Widget

Data

Event

Handling

method calls

control trigger

General Architecture of the Test

Model

Screen

– Focus control

– Menu states

– Method calls

Menu

– Entry behavior

– Iteration logic

Button

– Availability

– Reference value

– Condition control

– Process trigger

State Machine

(Event handling)

Coded Objects

(Data & Controller)

Screen

Button:
Navi

Button:
Audio

Button:
Tel

… …

Menu:
Content

Menu:
Main Menu

Menu:
Sub Menu

…

Copyright automotiveHMI 2012

Focus: Current Work

Copyright automotiveHMI 2012

WP7.4: System- & Test Model WP7.5: Test Case Generation

Failure Analysis Evaluation of

Test Case

Generators

Test Model

Defect Model

Methodology

Test Case

Generation D
e
m

o

Conclusion & Next Steps

Conclusion

• Failure analysis to set test focus

• Approach AUDI:

– Test case execution based on HMI System Models

• Approach Daimler:

– Dedicated Test Model (Object Oriented State Charts)

Ongoing & Next Steps

• Further developing the Test Model / Evaluation of different

architectures

• Automatic test case execution

• Connection to Exchange Format
– Test Model derivation

– Failure Report references

Copyright automotiveHMI 2012

Thank you for your attention.

Copyright automotiveHMI 2012

Classification & Distribution – Behavior

Screen structure (13.8%)

Any logic that determines what widgets

the screen contains

Widget (18.1%)

Represents the micro behavior to

navigate within screens

Screen transition (17.9%)

Any logic referring to a change of

available menu structure

Pop-up behavior (11.7%)

System or application messages that

overlay any content

Percentage (total) 61.5%

Copyright automotiveHMI 2012

Classification & Distribution – Contents

Percentage (total) 25.1%

Contents (25.1%)

Text (15.1%)

The displayed text is wrong, missing,

extra or incomplete

(e.g. the label of “Audio” button says

“Blind text” instead)

Icons & Symbols (8.2%)

The displayed Icon is either wrong,

missing or extra

(e.g. the hang up icon is outdated)

Animations (1.8%)

An animation is either wrong, missing or

extra

(e.g. on switching letters in the alpha

numeric selector no animation shown)

Copyright automotiveHMI 2012

Classification & Distribution – Design

Percentage (total) 5.8%

Design (5.8%)

Referring how content is displayed

Position (e.g. a label of a button is

centered instead of left-aligned)

Other (e.g. wrong clock)

Color (e.g. focused color is red instead

of orange)

Font (e.g. text font is Times New Roman

instead of Arial)

Dimensions (e.g. a button is higher or

broader than specified)

Shape (e.g. a button should be displayed

with rounded instead of sharp edges)

Color

Font

Dimensions

Shape

Position

Other

Copyright automotiveHMI 2012

