
C U S T O M E R
S U C C E S S S T O R Y

H E A L T H C A R E S U B S I D I A R Y
o f a l e a d i n g i n s u r a n c e a n d
h e a l t h s e r v i c e s c o m p a n y ,

d e l i v e r i n g h e a l t h c a r e
p r o d u c t s a n d i n s u r a n c e

s e r v i c e s t o a p p r o x i m a t e l y
1 0 0 m i l l i o n p e o p l e .

T h e c l i e n t n e e d e d t o d e l i v e r a n e w p r o d u c t o n t i m e a n d e n s u r e d e f e c t s w e r e e l i m i n a t e d
f o r a c o m b i n a t i o n o f a w e b i n t e r f a c e a n d m a i n f r a m e - b a s e d a p p l i c a t i o n . T h e k e y f o r t h e m
w a s t o l e v e r a g e t h e i r e x i s t i n g m a i n f r a m e b a s e d d a t a w h i l e e n h a n c i n g t h e a p p l i c a t i o n
u s a b i l i t y s o i t c o u l d b e d e p l o y e d i n p h a r m a c i e s a n d u s e d o n l i n e d i r e c t l y b y c u s t o m e r s .
T h e y s e l e c t e d C o n f o r m i q C r e a t o r a n d m e t t h e i r d e a d l i n e w i t h n o s u r p r i s e s a n d e l i m i n a t e d
d e f e c t s w i t h f u l l v i s u a l l y v e r i f i e d c o m p l e t e t e s t c o v e r a g e .

W W W . C O N F O R M I Q . C O M © 2 0 1 8 A L L R I G H T S R E S E R V E D

ABOUT THE CLIENT

Automating the Automation

P R O J E C T
O V E R V I E W
Mainframe modernization is a broad industry push to upgrade

legacy applications by replacing them with new “modern”

distributed server systems.

The reasons are many, including difficulty maintaining and

enhancing applications, often written in COBOL long ago,

where no one knows the code details so enhancements aren’t

even considered because it’s almost impossible to ensure

system quality and reliability.

One option is a wholesale replacement but, as you can imagine,

the cost can be prohibitive. Another less disruptive and less

costly approach is to interface web services and computer

interfaces to the mainframe’s back-end operations and use

advanced testing software to ensure the updated system

operations perform as expected.

By using advanced testing technology and methodologies these

mission critical, legacy applications can be upgraded with

minimal cost and high quality to run on currently available

hardware saving millions of dollars in operational costs.

M O D E R N I Z I N G

L E G A C Y S Y S T E M S

The user interfaces for these mission critical applications can

be updated to improve the user experience with modern user

interfaces (graphical, mobile, …) while keeping mainframe back

ends.

This means that legacy systems don’t need to be

decommissioned and replaced in total but more effectively

combined for seamless operation. These new interfaces and

APIs, plus the mainframe operation with data, need to be

tested effectively so full coverage is known and the quality is

maintained.

Conformiq’s Creator automated test design software does this,

thus enabling companies to not abandon their mainframes but

modernize them with confidence the new system operation

will work properly.

The company goal is to improve delivery of services by pharmacies

and their mutual customers through advanced prescription

services ensuring patients get the right medication at the right

time at the best cost.

Their current application was designed to enable the pharmacy’s

customers to “Manage their Medicine Cabinet” anywhere. It is an

easy-to-use tool to manage their medications, claims, and orders on

any device, whether at home or on the go, send medications right

to their home, and get the needed information to find the right

drug and pricing options for each user.

The front end of this application is a web-based interface/tool for

comprehensive formulary management based on creation and

maintenance of formularies using a Medi-Span based product file

and other data located on mainframe data servers.

A formulary consists of lists and rule sets with rules set up for

various qualifiers. This application uses a rules-based approach to

streamline formulary construction and maintenance. Drug data is

obtained from an external mainframe-based database and kept

current in local application lists using a list expansion process that

updates the product information whenever changes are made to

the lists and during report generation. These lists can then be

queried through an API interface by the external application to

determine formulary information for a given drug.

A user can create highly-configurable rules and lists using show

history, copy/save as, used in, and other GUI action buttons. Rules

automatically handle new products and product changes. A

building block concept allows use across formularies as the same

rule set can be used in multiple lists/formularies.

The information about this application just serves to highlight that

it is a complex application and one that must have complete

accuracy of operation against the requirements as well as being

defect free.

W W W . C O N F O R M I Q . C O M © 2 0 1 8 A L L R I G H T S R E S E R V E D

BUSINESS OBJECTIVES

Automating the Automation

This health care testing group was part of the team

building the application for both the front end

operation plus the mainframe operation to ensure

correct data was accessed including prescription

history, drug interactions, and prescription costs were

accessible to the application user. The project used a

modified agile approach to continuously create

application capabilities that satisfied the needs of the

pharmacy as well as the end users. Fast

comprehensive testing with known coverage was

imperative to meet their schedule and not have

surprise errors at the later stages of delivery. This

was especially true for the interaction of the

mainframe code with the graphical user interface

application.

After significant evaluation of all market tools for

automated test generation, Conformiq Creator was

chosen because it could test the operation of this

heterogeneous technology application plus delivered

directly executable test scripts for their Selenium web

execution platform plus their proprietary mainframe

execution platform.

This new application was being developed to provide an

improved customer experience in partnership with a

major pharmacy chain. The application deployment and

planning was decided and the remaining concern was

on-time product deployment to the country-wide

pharmacy chain. The application used a web-based

interface to allow customers access to their prescription

information and was linked to the customer’s data

residing on a mainframe computer. The application had

to be released on time and it was critically important

that test coverage was known to eliminate defects in all

stages of the end to end operation.

Manual test design was recognized as a bottleneck that

had to be eliminated to enable successful on time

delivery. Testing by hand was the baseline used to assess

efficiency gain delivered by tools being considered for

use in deployment. Even with this understanding, the

testing team tried many test design tools without

finding one capable enough to a) handle the application’s

complexity, b) provide known coverage of the system’s

operation, c) handle both GUI and mainframe testing,

and d) automatically generate executable scripts to

shorten their testing time using their custom

automation platform.

W W W . C O N F O R M I Q . C O M © 2 0 1 8 A L L R I G H T S R E S E R V E D

CLIENT CHALLENGES OUR APPROACH

Automating the Automation

W W W . C O N F O R M I Q . C O M © 2 0 1 8 A L L R I G H T S R E S E R V E D

THE SOLUTION
Conformiq Creator was used to graphically capture the mainframe application’s operational logic by manually modeling the screen

operation. This information was obtained in part from the 3270 terminal screen operation in which the entry fields were shown and

data values and strings for each entry were noted and modeled. The operation of each of the different screens was graphically captured

in this way.

From mainframe screen capture like is shown below in Figure 1, the interface available for testing the functionality to be tested was

identified and the links to the test data needed to generate data driven test cases were included in a graphical model of the application’s

operation. A sample model illustrating the captured interactions via the mainframe in a Structure Diagram (SD) and an Activity

Diagram (AD) using these interactions is shown in a Creator screen shot in Figure 2 below.

The structure diagram is the starting point and foundation

for building a model for testing as it captures the interface

available for interacting with the application under test via

mainframe or other interfaces such as GUI, mobile, API, or

the back-end. To streamline this part of the model creation

for mainframe applications, modelers used the Excel

mainframe importer in Creator to efficiently create these

mainframe custom action libraries. This cuts SD

specification effort drastically - nearly zero - and gives the

direct path to effective test automation.

Flows describing the functionality to be tested in the

activity diagram can be specified to link already existing

test data by using Excel spreadsheets, e.g., created from

queries on SQL databases or production data. A second and

unique option is to allow Creator to automatically generate

test data needed to test each path based on the modelled

application logic. This data generation capability saves

additional time as testers don’t need to wait for approved

data to create test cases. Creator does this for them. In this

particular case study, modelers decided to link existing test

data to the models themselves.

The Activity Diagram shown in Figure 2 was created by

creating flows of the application logic, specifying activity

nodes based on interactions with the application under

test, i.e., by dragging and dropping input or verification

actions from the imported mainframe interface, and

splitting flows based on data injected by input actions. The

Creator test generation engine then understood and

analyzed the flow and actions against the linked test data

then used the user selected test optimization method to

generate the optimized number of tests that cover all the

application included in the model – both the positive and

the negative test case flows. This ensured complete test

coverage and, with the reporting tools within Creator, the

coverage of each test case was shown as a highlighted path

through the activity diagram. Also shown was the

traceability matrix so each test case was linked with the

requirement(s) it covered.

FIG.1 OBFUSCATED EXAMPLE SCREEN OF APPLICATION UNDER TEST

FIG. 2 CREATOR EXAMPLE MODEL

Automating the Automation

W W W . C O N F O R M I Q . C O M © 2 0 1 8 A L L R I G H T S R E S E R V E D

THE SOLUTION

One key benefit achieved from this approach was that the entire team visualized not only the generated tests but also the overall

functionality of the application by having a graphical model at hand. Often as in this case, applications running on mainframes are old

and any original author is long gone. Without this understanding of the application logic it was very difficult to know what to test and

nearly impossible to know if complete test coverage had been achieved. Additionally, as the model grows with new additions based on

new application capabilities, component AND integration testing is delivered.

Once the generated test cases were reviewed, the next step was to automatically generate the test scripts with validations directly for

automatic execution with the customer’s custom test execution framework. This capability makes Creator unlike any other tool and

delivered huge time and efficiency savings (as all other tools only generate the test cases for manual execution and testers must write

the code snippets for execution along with determining their test validations). This is where the DevOps tool chain breaks down and

Creator is uniquely able to bridge this gap and enable test execution automation fast enough to deliver a continuous CI/CD process. This

enablement of direct automated test execution created huge time savings for the project. The tightly integrated testing process solution

using Creator is shown in the diagram below (Figure 3).

FIG. 3 END2END INTEGRATED TESTING PROCESS WITH FULL AUTOMATION

Automating the Automation

The customer was able to meet the target release date that had been
scheduled with their pharmacy partner with high confidence the
application was fully covered by the generated test cases. This was due
to Creator’s graphical reporting of test coverage through the
application and direct traceability to the product’s requirements. They
were able to deliver on time fully tested code even when development
slipped some of their dates.

Creator is best known for its ability to test GUI based applications but
the focus of this case study is the testing of the mainframe based
application.

As the test cases were nontrivial, the manual effort took considerable
time. Because Creator was used to model the application logic (not the
test logic like with other tools) the modeling effort was significantly
faster and the test case and executable script generation time almost
immediate.

Based on the end to end testing capabilities within Creator and its ability to test both through the graphical interface and the
mainframe operation, this customer used Creator to test their critical application. It was tested in time to meet the arranged go-to-
market schedule and its availability for customer use is now prominently displayed in signs outside their partner pharmacy
locations.

The next revision to this application is starting using the previous models so even greater time and cost savings will be achieved.

C L I E N T B E N E F I T S

S U M M A R Y

83%
EFFORT REDUCTION
IN DEVELOPING 1200

TEST CASES

Based on the initial results showing a 6X
productivity gain, this represented $360K savings

each year if the tester’s annual burdened cost is just
$60K each.

W W W . C O N F O R M I Q . C O M © 2 0 1 8 A L L R I G H T S R E S E R V E D

Automating the Automation

Manual 420 hours to Creator 70 hours

