

 © Conformiq 2017. All company names, trademarks and copyrights are the property of their respective owners.

Page 1

V0717

A Conformiq White Paper

PROBLEMATIC AND CONFUSING TAXONOMY OF MBT
APPROACHES

(i.e. what are the important differences in MBT tools)

Situation

The term MBT, for Model Based Testing, fundamentally means using graphical models (but not
in all tools) to be the basis for functional application tests. From this point onwards the usability,
capability, and benefits vary widely between different tools. Many tools model the test flows or
even the test cases themselves by having the user think of the application flows. Once the flows
are drawn from the requirements, test steps and validations are manually added. These
approaches deliver some value but often take more time than just writing test cases manually.
The real trick is to have the MBT software automate the thinking of the test case design and
then automatically generate the test cases, test steps, and validations, without any user
involvement, for direct automated test execution. Unless the MBT application itself thinks of the
test information required for automated execution the efficiency of the testing process may not
be great enough to motivate companies to make the digital testing transformation. Further, not
achieving sufficient gains with one tool shouldn’t mean companies stop looking for a better tool.
They just need to do their homework because these tools are very different “under the hood”.

The Fundamental Difference between Different MBT Tools

Model Based Testing is a quite confusing term and can be interpreted in multiple different ways
where one interpretation is as accurate as the next. Model Based Testing, or MBT for short, is
actually a term that captures multiple vastly different approaches under one big umbrella. Over
the years we have been educating the industry about these approaches, their weaknesses and
strengths, and we have been using taxonomy in order to classify different approaches based on
their core capabilities. According to this taxonomy the three main approaches to MBT are the 1)
graphical test modeling approach, 2) environment model driven test generation, and 3) system
model driven test generation. There are also others but these three are the main approaches.

This taxonomy unfortunately is quite incomplete and problematic at best. Firstly, there are
approaches that do not fit into these buckets in any practical way while still being "model
based". As an example we can take combinatorial testing tools that create test cases using a
model as inputs. Here the model is something that does not fall into any of these buckets as the
model actually captures data attributes, their respected values, some restrictions, and so on.

 © Conformiq 2017. All company names, trademarks and copyrights are the property of their respective owners.

Page 2

V0717

Second is that even within a certain bucket there are huge differences between approaches and
tooling.

Conformiq Designer and Creator fit tightly under the “system-model driven” approach. During
the past maybe 2 or 3 years we have started to see a lot of vendors and solutions that claim to
be “system model driven” and automate test design while actually being extremely limited in
their core capabilities. Just by looking into classification one cannot really tell what a particular
approach is good for and where it lacks capabilities. Indeed it can be very difficult to see
differences between tools unless you look a bit deeper and ask the proper questions from the
vendors. In this blog post I aim to highlight some of these main differences and questions that
everyone interested in MBT should raise while evaluating different tools.

What to Look For and Things to Consider

With system model driven approaches the practice is to focus on modeling (functional)
requirements of the system. There are today a handful of approaches from CA and Cognizant,
among some others, where users indeed model the requirements so, in that way, yes they do
fall under system-model driven approaches. The models are graphical, you annotate them with
requirements and tooling creates test cases out of them with requirement traceability, sure.
Actually all the model based testing approaches can produce the same end result -- that is they
can all be used to create executable test cases and test documentation. However, this is not the
main point. The key here is what users need to do in order to get those tests out. This is where
there are significant differences between approaches even within the system-model driven
umbrella. (Technically, to be accurate, approaches by vendors including CA and Cognizant are
actually based on exactly the same algorithmic and technology foundation as those tools that
fall under tester/environment-model driven approaches in the taxonomy described in our white
paper [https://www.conformiq.com/wp-content/uploads/2014/12/Comparing-Automated-Test-
Design-Methods.pdf]. It is just that in their way of approaching the users they focus on functional
requirements.)

Figure 1: System model on the left hand side created in the form of a finite state machine and the

same system model repurposed as a tester model on the right hand side. Two things happen
here: inputs and outputs are switched, and the state numbers in the tester model now refer to
internal states of the system under test to be verified. Path traversal procedures can now be

executed for this tester model in order to produce test cases. This results in the polynomial-time
generation of a polynomial-size test suite. Obviously, the system model and the tester model are
the same model for all practical purposes, and they are both computationally easy to handle. This
explains the wide success of finite-state machine approaches for relatively simple test generation
problems, and also the confusion that sometimes arises about whether the differences between
tester models and system models are real or not. For explicitly represented finite-state models,

there are no fundamental differences.

https://www.conformiq.com/wp-content/uploads/2014/12/Comparing-Automated-Test-Design-Methods.pdf
https://www.conformiq.com/wp-content/uploads/2014/12/Comparing-Automated-Test-Design-Methods.pdf

 © Conformiq 2017. All company names, trademarks and copyrights are the property of their respective owners.

Page 3

V0717

The approach implemented by Conformiq is driven by semantics of the model, which first of all
means that the graphical structure of the model is not used to guide the test generation at all but
only the logical meaning of the model. This is in stark contrast with simpler state machine /
activity diagram driven test generation approaches (such as ones offered by CA, Cognizant,
All4Tec, and so on) where the structure of a (typically only one) state machine / activity diagram
is used to generate a sequence of tests that correspond to different paths through the graphical
structure via straightforward execution of the model. This constitutes tests in their generation
process. While on surface this may sound like it’s merely a technicality, this is a very important
point because only the fully semantics driven approach can tolerate models where the high-level
control flow is deeply dependent on data values.

The above reasoning goes directly down not only into test data generation but to the level of test
design automation. Automatic test data generation, or lack of it, is the crucial part that often
leads to mediocre or poor quality testing and improved efficiency. With a majority of approaches
out there the test data generation and test output verification problems are not solved in an
efficient manner (i.e., not generated automatically by the tool itself), and generating inputs and
verifying outputs ("test oracle") is left completely to the user to manually think of and include in
the model. Now with those approaches, the models need to either contain hand-crafted
procedures both for input generation as well as for output verification, or then the data design
must be done entirely outside the context of modeling, and both are difficult, introduce large risk
and suffer from maintenance and modularity and thus reuse problems.

Figure 2: Scalability of the approach. For the pure system model driven paradigm the main

scalability problem is algorithmic complexity. The complexity grows when the application to be
tested becomes more complex from testing perspective (leftmost dashed arrow). For approaches

based on a simple path traversal—whether advertised as system model or tester model driven
approach—the main scalability issue is the cognitive difficulty of producing and maintaining good

models (rightmost dashed arrow)

Consider how many systems you can think of whose behavior is not integrally coupled with the
input that it processes? Actually, most applications and systems have infinitely many different
ways to interact with them, at least on a detailed level, and you need to make a (conscious or
not) decision on which scenarios to use for testing the system and which not; which data
parameters to use on the selected scenarios, the expected outcome, and so on. A solution that
leaves data design as an exercise for the user is bound to be insufficient with severe
shortcomings in its capability to produce good quality tests or will take extended time to model.
For example, real world applications have conditional branching and iteration in their flows so if
explicit data are added to tests generated from the process flow, the first challenge is to "fit" the

 © Conformiq 2017. All company names, trademarks and copyrights are the property of their respective owners.

Page 4

V0717

flow and the data, but especially afterwards when flow changes occur and you need to redesign
and "refit" the data. Great manual effort is needed to select the exact always correct data.

The key point is that you cannot think of control flow and data in isolation and therefore
separating the process of test design into flow and data design silos is problematic. This once
again stems from the simple fact that the control flow of virtually all real world systems is deeply
dependent on data values, and we argue that it is extremely difficult to create good quality tests
if you do not deeply couple these key aspects in your test design efforts and generate optimized
test cases from both combined. Indeed, the approach chosen by Conformiq allows the tool to
consider (through highly complex algorithmic operations) all the logic aspects of your system. It
will automatically figure out how the control flow depends on data and vice-versa, and it will
automatically produce test cases (and fully executable test scripts) that accurately cover those
logical and behavioral details of the system. We do recognize that there is a need for providing
a way to "inject" the model with production and provision data so we do provide the means of
importing data from external sources, but that comes after verifying that the system logic is
thoroughly tested and does not reduce the value of the test generation approach driven purely
by the semantics of the model. In simplified terms, Conformiq software understands the logic of
the SUT from the model and thinks of the test cases considering data and flow together.

How is Data Handled?

Another very important point on data is Conformiq’s unique use of symbolic data dependencies
used to verify and select test data provided by the user and/or compute unspecified data. In
practice this enables much more efficient modeling and model reusability. This is the first
requirement for symbolic execution. If you cannot treat the data in a symbolic fashion, you
cannot really apply much abstraction in modeling (symbolic meaning that we do not a priori
know the concrete value so we must treat it symbolically; for example an integer that we know
nothing about is treated as a symbolic element meaning that it holds any integral value and we
only know the actual concrete value later). Having the capability to abstract data in this way is
very important. If you cannot abstract data, what you essentially need to do is to enumerate all
the possible accepted and unaccepted values explicitly in the model, which makes modeling
tedious, error prone, unrepeatable, etc., plus making models hard to understand, reuse, and
maintain. Needing explicit data leads to test errors if application loop backs cause the data to
change. How (if) we handle iteration in the model is a very common and important question for
just this reason.

Consider the following web shop application as a simple example to explain the importance of
this capability. In this example the system accepts various items to be placed into and removed
from the shopping basket in any order. Using Designer or Creator the application is modeled
just like the real system would operate without “hard wired” data. The user can checkout or
cancel, etc. in any order with any items. The tool understands the semantics. With a less
capable approach users must enumerate all the paths; i.e., put this particular item into the
basket and checkout; put in this particular item and remove it and then checkout, etc. Every step
with every data element to be tested must be explicitly modeled. You can see that in a real
world application with comprehensive testing the modeling difference and reusability would be
quite different between these approaches.

What Makes the Underlying Test Design Engine Different?

It’s not just test optimization from reducing the number of test cases. This is simple and most
MBT tools perform this task. It is actual test design. The real capability differences come from

 © Conformiq 2017. All company names, trademarks and copyrights are the property of their respective owners.

Page 5

V0717

deeper within the engine. Conformiq Designer and Creator are unique because they are based
on a custom crafted semantics driven, symbolic state space exploration algorithm. This is the
only known solution that robustly generates both test inputs and outputs from a system model
without user intervention. Symbolic data dependencies are handled by constraint solving which
is used to verify and select test data provided by the user and/or compute unspecified data. Test
generation is guided by a deep state space analysis of the behavior implied by the model.
Controls are embedded within the tool to limit the problem of state space explosion. Test
selection is based on model driven coverage criteria and combinatorial optimization from the
explored part of the state space by the tool automatically selecting paths that lead to testing
goals. Thus there are major Conformiq engine differences delivering large benefits in real world
use as compared to the simple graph walker (i.e. test flow) tools previously mentioned.

Summary

Selecting Model Based Testing products on their modeling paradigm is a start but is just the tip
of the iceberg, so to speak. These tools do not exist in isolation so much more needs to be
researched on how the tools solve your problems. Classifying model based testing tool
approaches only based on high level characteristics is simply not sufficient to answer those
fundamental questions that we brought up earlier in this discussion. A high level comparison
misses critically important engine differences.

In the end, it all really boils down to what the user needs to do in order to get tests out. Does
better coverage really matter? Does efficiency really matter? We think they should and this is
probably the true difference in Conformiq’s approach.

Author Kimmo Nupponen has been developing automated test design software for over ten
years. He is the Chief Scientist and Vice President of Engineering at Conformiq.

 © Conformiq 2017. All company names, trademarks and copyrights are the property of their respective owners.

Page 6

V0717

Conformiq is transforming software testing with Conformiq 360
○

 Test Automation™, providing the most

sophisticated and comprehensive automated test design solution in the industry. The unique Conformiq

360
○

 Test Automation technology enables the next generation of testing: transforming, streamlining

and automating even the most complex system-level testing environments. Conformiq 360
○

 Test

Automation improves efficiency with a 40% faster test case development through test execution cycle;

enables delivery of higher quality code with 50% more defects found; increases manageability with 50%

better collaboration: and reduces costs with a 400% return on investment. Conformiq serves enterprise

IT, communications and embedded software markets worldwide. Privately-held Conformiq is

headquartered in San Jose, California, with a worldwide delivery and support organization including

offices in Finland and India.

www.conformiq.com sales@conformiq.com

USA FINLAND INDIA
 4030 Moorpark Ave. Westendintie 1 29 M.G. Road, Suite 504

 San Jose, CA 95117 02160 Espoo Bangalore 560 001

 Tel: +1 408 898 2140 Tel: +358 10 286 6300 Tel: +91 80 4155 0994

 Fax: +1 408 725 8405 Fax: +358 10 286 6309

http://www.conformiq.com/
mailto:sales@conformiq.com

