

A Conformiq White Paper

What you Need to Consider when Selecting an
MBT Tool

Interest in automating test design and model-based testing (MBT) has increased quite significantly over the last few years, as

traditional test design approaches have started to reach their limits. At the same time, industry experts in fields such as

financial services, retail, insurance, banking, telecommunications, and web-based services have started to see and understand

the benefits of an automated, model-based approach to the quality assurance function and the continued relevance and

success of their businesses.

The first and perhaps surprising observation that people

often make when they start to look at automating test

design and MBT is the variety of completely different

approaches, including both academic and commercial

tools. MBT can mean numerous different things, but

generally speaking, MBT is based on computer-readable

models that describe aspects of the system to be tested

with a format and accuracy that enables fully-automatic

or semi-automatic generation of test cases.

The three main approaches to MBT are 1) graphical test

modeling, 2) environment model-driven test

generation, and 3) system model-driven test

generation. There are also others, but these three are

the main approaches.

All these model-based testing approaches can produce

the same fundamental end result – that is, they can all

be used to create executable test cases and test

documentation. However, this is not the main point. The

key difference is efficiency - what users need to do in

order to get tests out.

Graphical test modeling is the simplest of the

approaches listed above, and consists of modeling the

test cases themselves in a graphical notation.

Environment, use case, or usage models describe the

expected environment of the system under test (SUT).

That is, these models describe how the SUT is used, and

how the environment around the system operates.

These models represent the tester – not the system that

we are testing. The models include testing strategies,

that is the input selection, and hand-crafted output

validators, or test oracles.

System model-driven test generation is the third main

approach to model based testing. Here, the model

represents the actual, desired behavior of the system

itself. Conformiq 360○ Test Automation including

Conformiq CreatorTM and Conformiq DesignerTM are

examples of a system model-driven approach.

With both graphical and environment MBT approaches,

the process of test design, (the process of deciding how

to test, what to test and what not to test) can be a

manual activity. These approaches to MBT rely on

manual test design, so they speed up parts of the test

design process but still leave a lot of work to the manual

process of thinking through all the necessary test steps

and combinations. This introduces a lot of risks, such as

missed test coverage, and it takes a lot of time, especially

when the requirements change.

As the most advanced of these MBT technologies are

system-model driven approaches, we will focus on them,

since they are the only approaches that are used to

actually automate the test design. Because there are

different automated test design tools, each with

sometimes subtle differences, it is useful to understand

what is important when selecting a solution for

automating the test design. The fully automated design

capability clearly delivers the maximum efficiency. It

doesn’t need user intervention to design or select the
test cases and execution results. Conformiq 360○ Test

Automation is unique because it delivers the most

automation of the complete test oracle and thus the

most efficiency of any MBT tool, with efficiency

improvement a key benefit.

Modeling / tool ease of use

Since all MBT tools and methods start with a model,

obviously the modeling notation and environment needs

to be such that you can understand and feel comfortable

working with it. Great test generation features of an MBT

tool are close to useless if you cannot understand how to

use them. There are many drawing and modeling tools,

so it is important to select a tool that fits your needs.

Some tools have overkill, with many non-modeling

functions, which makes learning and using that type of

tool more complicated than needed. Some contain

drawing tools that don’t restrict the models to constructs
used for test generation; these allow users to introduce

non-functional notations that will need to be changed

later during the import into the test design tool.

The optimal solution is a modeling tool tailored to your

targeted needs: in this case – system design for test

generation. Also it is wise to learn if a third party

modeling tool is required, or if one comes with the test

design software. Even modest tool costs add up for

larger volumes. More importantly, you would need to

continually match differing releases for compatibility,

putting you in the middle of two vendors to get an

immediate fix when a defect is found. Ask yourself: is

selecting a third party tool worth the risk and effort?

Modeling expressivity

You want to be able to rigorously express the system

behavior; an MBT tool that does not allow you to do that

is quite useless. For example, does the tool support

multithreaded / multicomponent modeling? Hierarchical

decomposition? Concepts for model reuse? Advanced

arithmetic? If these system operations can’t be
expressed in the models, the test design tool can’t cover
them. Ask what are the constructs your SUT needs

modeled to express its behavior when choosing a tool to

automate test design.

There needs to be a careful balance between expressivity

and ease of use, since as you simplify modeling notation

to make it easier to understand and work with, you are

inevitably sacrificing expressivity, and vice-versa. This is

the reason why Conformiq offers two alternative

modeling notations. The more traditional modeling

notation, which is based on Java and UML, is highly

expressive and can be used to meaningfully describe

extremely complex systems, but requires programming

skills so users need to be relatively technical. Embedded

software typically needs these capabilities, which are

included in Conformiq Designer. Higher-level / system-

level models that do not require such extensive support

for expressivity, such as ERP, enterprise applications, and

web services, can be modeled using simple non-

programming Conformiq Creator notation, using

Structure Diagrams of the actions and Activity Diagrams

of the process. This graphical modeling, using domain

specific entities, makes it easy to use by testers and

subject matter experts without any programming

background. Both Conformiq modeling tools are

designed to create system representations for testing

without carrying the overhead of additional non-

modeling complexity.

Generation of great quality tests

The quality of the test cases is by far the most important

thing in quality assurance. If the quality of your tests is

low, it really does not matter how fancy your testing

processes are, or how cool the tools you are using for

test execution. When you are about to automate the test

design, you really need to assess the quality of the test

cases that the testing automation / MBT solution

produces. Remember, the quality of the output that the

tool generates (test cases) cannot be of higher quality

than the input (model); nor can the generated test cases

be more capable than the test execution framework.

Therefore you must pay close attention to the quality

and completeness of the models created.

Look for a test design tool that offers a great variety of

different test generation heuristics. Relate these

heuristics to your particular needs. If your system is

manipulating string values, the tool should have some

extensive support for expressing string patterns (such as

regular expressions). If your system is performing a lot of

numeric calculations, make sure that the tool has

support for boundary value analysis and other

equivalence class partition methods. The more test

design heuristics the tool supports, the more breadth of

test coverage and flexibility it delivers for testing

different types of designs. You need to ask: what do you

need now, and what will you need for full coverage?

Scalability

Test generation is a very computationally intensive task.

The more complex the system, model and test heuristics

used, the more computing resources are needed. A very

critical capability is for the tool to automatically optimize

the minimum number of test cases from all those

possible; otherwise the computing resources needed

become quite high. This optimization is key since there

may be thousands of test combinations generated based

on your test coverage heuristics, while you want the tool

to determine the minimum number of cases to achieve

the target coverage without duplication. The tool needs

to automatically optimize test case combinations down

to just the few unique test cases required.

Beyond just optimization is the additional need for fast

test design times. Clearly this is the cornerstone of using

MBT tools. In the MBT process, the model must be

created correctly to match the requirements and include

the positive and negative paths. If the model isn’t good
or complete, the test cases will not be, either. Further,

you need to know if you have achieved coverage of all

your test targets, and both of these needs can’t be
known until after test cases are generated. Thus,

although it may not be immediately apparent, this means

that with less advanced MBT tools, you will iterate

generating test cases until you achieve your goals. If it

takes 1 hour to generate tests and you need to do it 10

times to get the correct test cases, then an advanced tool

such as Conformiq with 360○ Test Automation can

achieve the same results in 10 minutes for each iteration,

and result in much better efficiency.

Test engineers may devise models that are beyond the

capabilities of some MBT tools, which simply choke when

given such a model. In real use, complex models are

often the norm. Unfortunately scalability is something

that is quite often ignored while running initial proof-of-

concept projects. This means that organizations can

easily invest in a tool that does not scale to real world

industrial problems. With these tools, models must then

be simplified, meaning reduced coverage and/or more

manual effort is needed. This can be very expensive and,

unfortunately the realization is often made too late that

a poor investment was made. Therefore, it is important

to stress the engine and the complete automation

process from modeling through to test case output and

even automated test execution prior to making a tool

decision. Remember, all tools look fully capable for

industrial use during demos and simple proofs of

concept.

Conformiq has invested a significant amount of effort

over the years to bring the performance of the test

generation core engine to a level to manage real

industrial-sized problems. A short blog about this is

available on the Conformiq website, shedding light on

what happens under the hood and how the Conformiq

tool can be deployed on a cluster server or cloud for fast

test generation. Although it may seem easy to

automatically split the model across multiple

computation cores, the real trick is to do it

deterministically. This means that regardless of which

cores and their order used, the generated test cases are

always the same every time. Conformiq’s test generation
core is a magnitude of order stronger than any other tool

on the market today, and is the only one using multicore

processing.

Integrations with other tools and integration

API’s

The full benefits of using an advanced tool for

automating test design with MBT are not realized if it is

used as a standalone tool. Instead, it should be tightly

integrated with other SDLC tools used to set

requirements and document, manage, and execute test

cases. It is important to notice that most of the MBT

tools do not actually execute the generated test cases,

but instead export them into various different test

execution environments. This is primarily because many

MBT users have already invested in test execution

infrastructure tools prior to moving to include

automating the test design. Therefore, instead of

replacing your existing test execution system when

deploying MBT, you should look for a tool that integrates

with your existing framework. This same approach

applies if manual test execution is employed; you look

for a tool that integrates into your way of working.

Test execution infrastructure is just one piece of the

overall solution, and the MBT tool should integrate with

your other SDLC tools as well: tools like requirement

management, test management systems, version control

systems, and so on. If there is no out-of-the-box

integration with your selected tool, the MBT tool should

offer integration APIs that allow it to easily integrate

with your tool. Investing in a tool that does not have

proper integration APIs can be risky, as that can limit

your freedom to upgrade your testing infrastructure in

the future and support multiple test execution platforms.

To this point, Conformiq was originally architected with

open interfaces to enable users to surround it with their

own selected best-of-breed tooling.

Test case review and documentation

Related to the quality of the test cases is the need for the

tests to be understandable and very easy to review. You

should not take it at face value that tools just magically

create good quality tests, and then not spend any time

on reviewing them - just the opposite. The tool should

allow you to understand why every test case is needed.

Tool report generation capability starts from “simple
things,” like generating understandable and meaningful

names and high level descriptions for test cases. For

example, naming test cases as “Test #1”, “Test #2”, and
so on, does not help you understand what the tests

cover, which then requires manual test case renaming.

Additionally the report formats must be very flexible, as

every project and test lead will want their own unique

format.

In order to be sure that you have not missed anything in

the test design, the tool must promote quality, and

convince the test lead and stakeholders that the

generated test suite indeed meets all the requirements.

That is, you must be able to assess the coverage of the

test suite. You must be able to relate the tests back to

the functional requirements and also to the model, with

tools for detailed analysis of each and every test case.

What requirement does each test case satisfy, and what

part of the model does it cover? If necessary, you must

be able to walk through each test case step by step and

simulate it against the model to gain full understanding

of the tests.

Conformiq 360○ Test Automation delivers unsurpassed

capabilities and flexibility for automatically documenting

test cases, with auto-generated meaningful unique

names and detailed test descriptions for investigating

tests.

Model analysis and debugging

Since system models are developed by humans, they

may contain errors and omissions. A model that

performs arithmetic can, for example, perform a division

by zero, while a concurrent model can have model-level

thread scheduling that causes the threads to deadlock.

The bigger and more complex models get, the more

important it is for the MBT tool to provide different

means for analyzing potential issues in the model itself,

simulating the model in order to gain an understanding,

identifying erroneous scenarios and missing coverage,

and then linking any failed test execution results back to

the model, for better understanding of the root cause of

a failed test case. These are important capabilities that

often go unnoticed during the very first proof-of-concept

pilots. Again, investing in a technology that does not

support full-fledged model analysis can in real use deliver

much less than anticipated efficiency gains.

Conformiq Designer, for example, while performing test

generation, verifies that the model is internally

consistent, i.e., the tool checks for the absence of

internal computation errors (such as division by zero). If

the model happens to contain an internal error,

Conformiq Designer will produce a comprehensive report

that details the circumstances under which the problem

occurred, graphically pin-pointing the problematic

location in the model, and show a full execution trace to

the problem. For further analysis of the problem, you can

start a “model debugger” which is an infrastructure that

allows you to analyze various issues in the model and get

a better understanding of the automatically designed

and generated test cases. Conformiq Creator has a “Live
Check” capability that notifies you of the remaining

information needed to complete the model and a

graphical debugger to help fix model defects. With these

tools, model debugging and analysis is much faster and

less error prone, which streamlines the whole modeling /

test generation process. Debugging real world models

can be the most time consuming part of deploying MBT.

This becomes increasingly important if MBT is used in an

agile development process.

The whole premise of advanced MBT automatic test case

generation is that the model is complete and correct.

Bad models give bad results. The effort in creating a

good model is the hidden “cost” of deploying poor

solutions for MBT. Therefore, it is very important to

choose a solution that allows you to quickly create good

models and understand them. So, be sure to look for a

solution like Conformiq that offers fluent model

debugging and analysis capabilities.

Support and user community

System model driven automated test design and MBT

requires a different skill set than traditional manual

testing, Testers must fully understand how the high-level

system works, not just think about some use cases. Also,

working with the models requires a different mindset

than traditional testing, so some test engineers may feel

slightly intimidated by these tools, but ease of use can

conquer this.

Many best practices have been collected over the years,

with documentation available on how to address the

issues associated with this testing transformation.

Conformiq can not only provide a state-of-the-art testing

solution, but also training, documentation, and best

practices around these and other questions both before

and during deployment. Best practices include topics

ranging from how the new testing process affects project

staffing, to how models should be created to enable

reusability on other projects.

Overall, sales Proofs of Concepts (PoCs) are intended to

do exactly what they say – Prove the Concept. They do

not prove the capability for use on real programs. While

full testing cannot be done as a PoC, you can and should

select PoCs that expose the positives and negatives for

all the test automation MBT tools you evaluate. Make

the PoC really meaningful to you, run multiple PoCs to

demonstrate tool differences, and be sure a specific tool

will work for you. Although difficult to determine the real

engine differences, that understanding is THE most

critical learning to ensure successful adoption. And

please contact Conformiq to run a POC with us!

Author Kimmo Nupponen, Chief Scientist at Conformiq, has been developing automated test design software for

over ten years. He understands what is really needed for real world use and the important differences between

tools, especially in their engines.

Copyright © Conformiq Inc. and its subsidiaries 2015. All Rights Reserved. All information in this publication is provided for informational purposes

only and is subject to change without notice. Conformiq, Conformiq Creator, Conformiq Designer, Conformiq Modeler, and Automated Test Design

are all trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

www.conformiq.com

USA

4030 Moorpark Ave

San Jose, CA 95117

Tel: +1 408 898 2140

Fax: +1 408 725 8405

FINLAND

Westendintie 1

02160 Espoo

Tel: +358 10 286 6300

Fax: +358 10 286 6309

SWEDEN

Stureplan 4C

SE-11435 Stockholm

Tel: +46 852 500 222

Fax: +358 10 286 6309

GERMANY

Maximilianstrasse 35

80539 Munich

Tel: +49 89 89 659 275

Fax: +358 10 286 6309

INDIA

29 M.G. Road Ste 504

Bangalore 560 001

Tel: +91 80 4155 0994

http://www.conformiq.com/

