
Automate the Automation

WWW.CONFORMIQ.COM @2019 ALL RIGHTS RESERVED

AUTOMATED TEST
DESIGN AS AN

IMPROVEMENT TO
TEST DRIVEN

DEVELOPMENT (TDD)
AND BEHAVIOR

DRIVEN
DEVELOPMENT (BDD)

FOR AGILE TESTING

WHITEPAPER

There are multiple processes that have been and are being
proposed for making functional test design faster than using

traditional manual design techniques. It is primarily in conjunction
with Agile development where these methods are getting the most

attention. However, test design speed up is not the equivalent of
improved test design productivity because there are other aspects
necessary for overall improvement in the project’s testing process.

Even in Agile programs, the focus must be on improving the overall
project’s testing process, not just faster test design. Automated Test

Design (ATD) solves this issue by automating the entire SDLC
process in addition to automatically generating test designs and

executable scripts at the speed of development. This paper is
intended to provide more insight into these older developer test

design methodologies, what they do and don’t deliver, and then to
compare and contrast them with the newer Automated Test

Design process as implemented by Conformiq.

INTRODUCTION

BACKGROUND
One of the processes promoted for speeding test design is Test-Driven Development

(TDD). It is a core part of Extreme Programming (XP) and other “light weight”

development practices and, though not a core part of Agile development, is a common

partner to Agile.

As originally described by Kent Beck, TDD meant that before a developer could add a

feature in the software, he/she first must write a failure test case. Their next objective

was to write the minimal code that would pass that test case. Once the test passes, they

refactor the code making sure that the test still passes. More broadly, TDD is used to

describe any process where tests for a feature are written before the feature.

In practice, TDD has been considered too unstructured and so Behavioral Driven

Development (BDD), as an enhancement over TDD, is currently getting significant

interest as being the “next” great test improvement process for Agile development

projects. Both these methods were developed prior to automated testing tools and thus

don’t account for improved efficiency from advancing technology. Yet their greatest

limitation is their inability to deliver a complete testing process.

Behavior Driven Development (BDD) is a software development process that aims to

combine the techniques and principles of Test Driven Development and Object

Oriented Design by leveraging ideas from domain specific designs. It has excellent

philosophical goals and ambitions, as BDD fundamentally aims to engage all

stakeholders in the software development process by enabling non-technical

stakeholders, such as business analysts, system engineers, and customers, to contribute

and collaborate in the process by writing user stories.

In principle, BDD is founded on the use of a simple and informal notation, which is

very close to common language and based on the main concepts of features and

scenarios. Scenarios detail the “desired behavior” for each feature, which are

essentially acceptance tests in the form of user stories. Probably the most widely

known and used notation is Gherkin, which is used by tools like Cucumber, FitNesse,

and JBehave.

Here is a Gherkin example:

Feature: The online shop keeps track of goods in a shopping basket.

Scenario: Put an item into an empty shopping basket Given the shopping basket is

empty When user adds one item to the shopping basket Then the shopping basket

should contain one item.

It is easy to see what is happening here. But if you take another look at this example,

Gherkin is really nothing more than a requirement and an informal test description.

This informality is both a strength and a weakness when it comes to test automation.

Automation frameworks revolving around Gherkin can only generate simple code

stubs and they still require a significant amount of implementation by software

developers in order to get these codes ready for execution. Each Gherkin scenario

clause is “just text,” or text created with the preferred wording by the Gherkin author.

Since automation codes need to be written manually and mapped to that description,

dealing with change management is a significant issue. Scenarios make it very difficult

to assess the quality and completeness of your software testing.

For example, how much have you actually tested your application? The use of Gherkin

does not guarantee systematic coverage of functionality. Have you really tested all the

possible data combinations? Which data combinations actually make sense? Do you

have scenarios that fully cover all decision points within your functionality to be

tested? Have you considered boundary values?

Automate the Automation

WWW.CONFORMIQ.COM @2019 ALL RIGHTS RESERVED

The use of TDD and BDD testing has proven to work in an Agile

process, but the results show that with these methods, improved speed

comes at the cost of loss in quality and knowledge, especially the

understanding of test coverage. Other issues include:

1. Although TDD was created to match the need of a software

development process with short development cycles, the constant time

to market pressure made it hard to maintain and constantly update the

(regression) test suites.

2. Another concern was that the test cases written by developers were

created to cover their own code. They did not fully cover the system

operation, thus the operation of multiple code parts written by

different developers all running together was not taken care of in any

of the tests. This meant that additional system (E2E) test cases needed

be written later in the process causing the system level defects to be

found much later.

3. One other issue was that because the developers wrote their own

tests, this took

time away from their writing code and reduced their design efficiency.

4. And then the process of having the developer test his/her own code

goes fully against the tenants of the IV&V process. Systemic defects

can slip through the developer’s “blind spots”.

The TDD/BDD testing process is shown below.

Automate the Automation

CHALLENGES

WWW.CONFORMIQ.COM @2019 ALL RIGHTS RESERVED

FIGURE 1. The TDD and BDD testing process

This is where Automated Test Design (ATD) based on Model Based Testing methods (MBT) and Conformiq

come in. MBT enables testers and software developers to complement the work done by business analysts,

system engineers, and customers by generating the tests they created as both Gherkin scenarios and test

automation scripts of the entire test logic as code that includes test data. Tests are automatically derived

and generated by the ATD tools, which provide systematic and repeatable coverage of the functionality to

be tested. As requirements change, the model is quickly changed to match, and all generated scenarios and

test automation codes are automatically updated to eliminate the issue of maintenance. Requirements can

be directly downloaded from requirement management tools linked to the MBT models and requirement

traceability automatically established.

Conformiq Automated Test Design is an approach to model-based black-box testing that starts with simple,

high-level formal models of the system under test (SUT) that is being designed, and then automatically

generates test cases. The model of the system can be continuously modified in parallel with development of

the system itself. In TDD, you write a test case for a feature before you write the feature. When ATD is

applied, you augment your SUT model to express your feature, then regenerate the tests (which will

include one or more tests relating to your new feature), before you write the feature.

In on our experience with industry use cases of ATD, we have found two things: first, the productivity

improvement of actual test case generation with ATD versus manual creation of tests is significant, on the

level of an order of magnitude. Second, this productivity improvement is even higher in the context of

incremental development: with ATD, the tool will automatically regenerate the full test suite when the

model is changed, including determining which prior test cases are no longer applicable. Plus, ATD

automatically generates the test oracle, i.e., the expected correct test execution result.

Automate the Automation

A MORE ADVANCED METHOD IS NEEDED

WWW.CONFORMIQ.COM @2019 ALL RIGHTS RESERVED

FIGURE 2: The Conformiq ATD testing method process

· Not well understood requirements. Here the argument is

that it is inefficient to apply TDD as the requirements are not

well understood early in the process. It is true that the

requirements typically contain ambiguities, omissions and

contradictions. One benefit of ATD is that just the act of

modeling the system behavior often improves the quality of

the requirements. That means a lot of defects can already be

spotted in the model of the specifications and requirements

before even writing a single line of code. As one creates a

model of the system behavior, one often raises a lot of

questions regarding the requirements, so already the

modeling process can expose a lot of issues with the

requirements. This should not come as much of a surprise.

After all, system modeling involves the development of a

small high-level prototype of the real system and it has been

long known that prototyping is a good and efficient way of

finding inconsistencies in the requirements.

· Varying requirements. This is especially important

within Agile development projects where the requirements

are updated during the project. In ATD, a simple formal

model of the SUT will explicitly embody the requirements

and then the refactoring of requirements is dramatically

simpler to do than the equivalent effort of refactoring a set

of manual tests. With ATD, the effort is linear with the

number of requirements that change, whereas in a manual

process it’s proportional to the product of the requirements

that have changed and test cases (since all test cases need to

be checked for all requirements that have changed).

· TDD doesn’t emphasize good tests. The argument here is

that as the developers have not implemented the solution

yet, the tests are not “good enough” and, for one, they do not

explain the solution. With ATD the idea is that the model

represents the actual, desired behavior of the system itself –

not the test cases nor how it should be tested. ATD improves

the quality of the test cases because the automated approach

to test design lowers the risk of having incorrect, missed and

redundant tests. An engineer can, for example, accidentally

miss a test case that is dictated by the requirements, such as

for an error handling case, a limit value of a data parameter,

or an expiration of a rarely activated timer, but not so with

the algorithmic approach.

· Unit tests are not system tests. TDD test cases written by

developers cover their own code. They do not cover the

system operation and the operation of multiple code parts

written by different developers all running together. This

means that additional system test cases must be written later

with the TDD approach. System defects are found much

later. With ATD, these system tests are automatically created

as the model grows or models are combined into the full

system.

Automate the Automation

WHAT ARE THE TDD/BDD ISSUES THAT ATD
SOLVES?

WWW.CONFORMIQ.COM @2019 ALL RIGHTS RESERVED

· Over fitting tests to the code. A common concern is that if

a developer first writes the tests, he may over fit the actual

implementation to the tests. With ATD, the developer

doesn’t design the test cases, so there is no risk of fitting the

implementation to the tests. However, a key point of model-

based black-box testing is that the system is judged against

an independent reference. Without this approach there is

naturally a possibility that the developer reflects the same

fault both into the test and then into the implementation

code. This also highlights the importance of good software

development and testing practices, such as model reviews as

part of TDD and Agile.

· Tests are expensive to implement too early. Here the

adherents say that the tests should be guided by code and

expert knowledge of the implementation on where the

problems might be. Therefore implementing tests too early is

expensive as you do not have the details of the code

available. This is a very common white-box view to the

problem where we expect to have access to the

implementation details for devising test cases. However,

with model-based black-box testing we approach the

problem from a different angle and we assume no

implementation details of the system and we validate

whether the given system conforms to its design and

functional specification. The test cases that a model-based

testing tool like Conformiq CreatorTM generates are black-

box by nature which means that they depend on the model

and the interfaces of the system under test, but not on the

internal structure of the implementation. One does not

require an understanding how the system has been

architected internally in order to create a model, thus

lowering the cost of test creation and allowing tests to be

generated prior to incremental code drop.

· Not all developers know how to or want to test. Testing

requires a different mindset from development and it may be

true that some developers are poor in doing test design. This

issue can be resolved by pairing the developers with people

who know how to test. When ATD is applied, modeling can

be accomplished by a non-developer (a SME, a modeler, etc.)

who is an integral part of the development team. This means

that developers do not need to also be testers and thus do not

need to spend time writing test cases, a key benefit in an

agile delivery process with short sprint times. This improves

their efficiency but also, as no separate I&V function exists,

having the same person write both testing assets and code

sets up the potential for pathologic errors.

These experiences would argue that ATD is particularly well suited for Agile and as an improvement to test driven development methods. In addition,
ATD can help in improving some of inherent issues of TDD and BDD that adherents have raised:

Conformiq has developed an approach to model-based black-box testing that starts with simple, high-level

formal models of the system under test (SUT) that is being created, and then automatically generates test

cases without further user involvement or direction. The model of the system can then continuously be

fleshed out in parallel with development of the system itself.

Automate the Automation

CONFORMIQ ATD SOFTWARE

With Conformiq’s Automated Test Design process
the model is manually created from the

requirements and test scripts are automatically
generated for execution

The capabilities beyond test cases that are

automatically generated by Conformiq are those
needed to ensure that testing is done well and that

the stakeholders have this knowledge. Further,
because test cases are generated, they are

consistent in how they are written, whereas
manually created BDD textual test cases vary by

author.

WWW.CONFORMIQ.COM @2019 ALL RIGHTS RESERVED

FIGURE 3: The Conformiq 3 step process

Instead of seeing BDD and MBT as competing approaches, we can view them as being complementary. It can

be beneficial to integrate the two approaches in order to get the best of both worlds. Instead of requiring and

relying on software developers to “connect the dots” through manual implementation of code stubs and

maintenance of every clause in every scenario, the MBT model is automatically updated. The model is then

processed by Conformiq’s ATD engine which generates an optimal collection of tests that can be exported as

Gherkin scenarios for business analysts, system engineers, and customers for model review. These can be

executed automatically using frameworks such as JUnit, Cucumber, FitNesse, or also output in any other

execution for QTP, Selenium, and other frameworks.

The speed of agile development is a key to its appeal and broadening use. However, testing methods

developed over a decade ago are insufficient for delivering quality at the speed of development. A new

process of Automated Test Design eliminates the inherent problems with those previous developer-centric

testing methods and instead introduces a method that delivers the needed quality and documentation for

the project at the speed of development.

CAN THESE PROCESSES BE USED TOGETHER?

SUMMARY

