
Copyright © Conformiq Inc. 2013. All Rights Reserved.

A Conformiq White Paper

Why Automate Test Design?

TRADITIONALLY THE TEST AUTOMATION HAS BEEN FOCUSED MAINLY ON AUTOMATING THE TEST MANAGEMENT AND TEST EXECU-

tion. Unfortunately, the test design often still remains a manual activity. The test design itself

concerns making the decisions on (1) what to and what not to test, (2) how to stimulate the

system and with what data values, and (3) how the system should react and respond to the

stimuli. The test design is therefore a separate task from test execution and is done before ex-

ecuting the tests against the system. So even still today, automated tests are too often created

and executed only for regression – not really to find defects in the new functionality. Traditional,

manual test design and manual test execution are still prevailing approaches for testing new

functionality. By automating also the test design, the testing efforts can be significantly reduced

while at the same time the quality of the testing can be increased. One of the most promising

approaches for automating test design is via a model based testing approach called system

model driven test generation. This is the topic of this white paper.

2

Conformiq White Paper – Why Automate Test Design?

MANUAL TESTING PROCESS

In order to see and understand why we need test

automation in the first place, let’s take a look at a

completely manual testing process – this is the earliest

form of testing but it’s still widely used today

The test design here is done manually based on infor-

mal requirements documents. The test designer goes

through the requirements document and manually

invents test cases for testing an implementation that is

based on the same set of requirements.

The output of the manual test design step is a docu-

ment that describes the desired test cases. With the

test cases, test execution is done manually. A manual

tester follows the steps of the test cases and directly

interacts with the SUT comparing the values of the SUT

output with ones expected, finally recording the test

verdict.

In order to carry out the test design, the test designer

needs to possess expert knowledge about the SUT

and he also needs to have test design strategy skills.

The manual test execution requires less pure talent but

what is needed is the ability to follow the steps of the

test cases and knowledge about how to interact with

the SUT.

The main benefit of the manual testing approach is

that it’s very easy to start with and the initial cost is low.

However, as everything is done manually, there are

numerous shortcomings with this approach that can

be divided into two groups, first the ones related to

test execution and second related to test design.

When looking at shortcomings on the test execution

side, the biggest and most severe issue is that there

is no automated regression testing, meaning that we

need to do the whole process over and over again

when the system changes. This quickly becomes a

boring and time consuming activity. This process is

actually so costly and time consuming that it often

forces teams to cut corners and sacrifice the quality of

their work.

It simply does not scale, meaning that it forces an ever

growing or at least the continuation of a costly manual

head count intensive process that can be improved.

The second set of problems stems from the fact that

test design is done manually which introduces great

risks, - it’s time consuming and hardly reproducible.

We have a lot to say about this particular problem in

this paper, and we will get back to this in greater detail

a bit later.

Because everything is done manually, there is no

systematic way to estimate functional coverage and

therefore it is very difficult judge the progress of

testing or quality of the produced test cases.

There is no automatic way of linking the requirements,

therefore requirement traceability is either omitted or

established manually.

3

Conformiq White Paper – Why Automate Test Design?

RECORD AND PLAYBACK

Purely manual process can be improved by automat-

ing test execution. The record and playback method

attempts to reduce the time and cost of test re-exe-

cution by recording the interactions with the SUT during

the first test execution session and then enabling a play-

back of the recorded test scripts so that they can be re-

executed at later time.

The initial test execution is a similar activity to the one

in a completely manual testing process – the differ-

ence being that now we also record the interactions

with the SUT. When the system changes, we actually

have something that we can try to run against the

system – the recorded test scripts.

As with the manual testing process, the record and

playback approach is very easy to use and the initial

cost can be low. As the interactions are recorded, one

can trivially replay the recording allowing one to re-

execute the test scripts for “free”.

The main problem with applying record and playback

to automate the re-execution of the tests is that it is

extremely fragile towards changes in the SUT. This inabil-

ity to adapt to small changes in the SUT often forces

the test engineers to re-record all the test scripts when

there is a small change in the SUT, causing a huge

maintenance problem. The problem is so severe that

these solutions are often abandoned after a couple of

new revisions. Some of the record and playback tools

try to alleviate this problem by enabling one to elevate

the level of abstraction of the recorded test scripts by

allowing one to make changes to them, for example,

by using place holders in the recorded scripts which

are then filled during the execution time from a data

table.

As record and playback aims to only address the

problem of re-executing the tests, it suffers from the

same shortcomings as the manual testing process.

In practice, record and playback is not an attractive

approach for addressing test automation delivering

limited efficiency gains over manual.

SCRIPTED TESTING

In a scripted testing process, the test execution problem

is solved by automating it by writing test scripts.

4

Conformiq White Paper – Why Automate Test Design?

Instead of directly interacting with the SUT, the test

engineer writes a collection of executable test scripts

each containing one or more test cases. These test

scripts can be automatically executed against the SUT.

They stimulate the system with certain input values.

Test scripts can be implemented in many scripting

or programming languages and then executed on a

framework that can read in scripts in that particular

language.

The test execution tool records the output values, com-

pares the observed values against expected values

and finally gives out a test verdict. As test scripting is a

programming task, test engineers need to possess dif-

ferent skills from test design and test execution.

As the test execution is automated using test scripting,

one can already run the initial testing using the auto-

mated scripts. Regression testing can also be done for

“free” by simply re-executing the test scripts.

One of the biggest shortcomings of this approach is

that the scripting in the first place is a complex activity

and requires a lot of time and effort.

But what is even worse, is the maintenance problem

that scripted approaches have. This stems from the

fact that the test scripts need to be updated not only

when the requirements change but also when some

implementation detail changes. How much time and

energy is then spent on maintenance depends on

the abstraction level of the test scripts. Implementing

nicely abstracted test scripts demands some advanced

skills from the test designer.

As scripted testing focuses on addressing the test

execution automation problem, it suffers from many of

the same shortcomings as the manual testing process,

namely from the risks and costs associated with the

manual test design, ad hoc coverage and manual

traceability.

KEYWORD DRIVEN TESTING

In order to overcome the maintenance problem intro-

duced by scripted testing, the abstraction level of the

test cases can be elevated using keyword driven testing.

The main idea here is to express the test cases in as an

abstract form as possible while still providing enough

details so that they can be readily executed against the

real system.

In data driven testing or data table testing we have

a set of abstract test cases that do not fix the data

values but the data values are read from a data table

during the test execution. This allows one to reuse

same test scripts for testing the system with multiple

different data values. This obviously will reduce the

maintenance efforts.

In keyword driven or action word testing, one takes

this concept a bit further and abstracts also the test

steps in the test cases by introducing keywords or

action words that then correspond to some well-

defined fragment in the test scripts. This allows non-

programmers to implement the test cases simply by

constructing them using these action words, thus this

enables them to work at a more concise and abstract

level. The action words are mapped to actual test code

by a keyword driven testing framework and the test

5

Conformiq White Paper – Why Automate Test Design?

code needs to be implemented by engineers who can

do programming.

The main benefits of keyword driven testing are that

it allows engineers to work at more abstract and

concise level and also that the tests can be imple-

mented by non-programmers. As the keywords map

to executable code fragments, keyword driven testing

offers the same benefits as scripted testing, namely

automatic execution of the test cases and automatic

regression testing. An additional benefit is that the

maintenance efforts are reduced compared to scripted

testing because of the possibility of more reuse and

abstraction.

However, the test data and test oracles are still

designed manually. In addition the test coverage with

respect to requirements and traceability, like with all

the other approaches introduced so far, needs to be

done manually.

THE NEXT STEP...

So what is then the next step? How should we solve

the problems with the current test automation solu-

tions? All these approaches rely on manual test design

and therefore none of them guarantees a systematic

and repeatable coverage of the system behavior. This

non-repeatability is a huge risk already in itself. With

manual test design it is really hard to assess the quality

of your testing efforts which quite often leads one to

evaluate the quality and progress of the manual test

design process using spurious metrics such as number

of test cases or number of hours spent on doing testing.

At the same time, manual test design is also a very

expensive process - especially when there are changes

in the requirements. In practice, test engineers are

forced to manually analyze each of the test cases

individually in order to see which test cases need to

be updated, which removed and which added in order

to fill the coverage gap when there are changes in the

requirements. This loses a lot of productivity.

Finally, the requirement tracking in all of these

approaches is done manually.

AUTOMATING THE TEST DESIGN

Traditionally in the test design phase, the test engi-

neers and designers form an understanding of the

system using the specification and requirements –

they form a mental model. This mental model is not

one of tests but the system itself. In a purely manual test

design process, this mental model of a system is then

turned into test cases in the mind of the test engineer.

This is an implicit, creative process that is not really

reproducible and is bound to the ingenuity of indi-

vidual engineers. If you lack talent for doing good test

design, you’re out of luck.

As the test engineers form a mental model of a system,

then it seems that test design can be automated

by making this model explicit i.e. by expressing this

mental model in a form that is understood by a com-

puter and then generating test cases out of this explicit

model.

MODEL BASED TESTING

Now when we have a computer readable model, we

can apply model based testing to the problem of test

design automation. Model based testing is currently a

trendy thing and can mean numerous different things

and approaches. In a loose term, model based testing

is anything that is based on computer readable models

that describe some aspects of the system to be tested

in such a format and accuracy that it enables either

completely or semi-automatic generation of test cases.

The three main approaches to model based testing

are 1) graphical test modeling approach, 2) environ-

ment model driven test generation., and 3) system

model driven test generation, There are also others

but these three are the main approaches.

All the model based testing approaches above can

produce the same end result – that is they can all be

used to generate executable test cases and test docu-

mentation. However, this is not the main point here.

The key here is what the users need to do in order to get

those tests out.

6

Conformiq White Paper – Why Automate Test Design?

Graphical Test Modeling

The graphical test model is simplest of the approaches

listed above and is actually nothing more than mod-

eling the test cases themselves in a graphical notation.

That said, graphical test case modeling aims to provide

similar benefits to keyword driven testing i.e. by elevat-

ing the level of abstraction one can reduce the main-

tenance costs by enabling more reuse and increasing

the productivity. The tools then turn these abstract

graphical test cases in to executable test scripts.

The models that capture graphical test cases are easy

to understand and the complexity to create one is low.

Therefore the approach may appeal to non-program-

mers as graphical test case modeling does not require

programming skills which is quite often expected for

other model based testing approaches.

However, as we are modeling the test cases themselves,

really the only thing that we are automating here is the

creation of the executable test scripts. Therefore the

value proposition is quite the same as with keyword

driven testing. No test cases are created beyond what

the modeler thinks of and when the design changes,

the manual effort of remodeling is the same as the

original effort.

Environment Modeling

Environment, use case, or usage models describe the

expected environment of the SUT. That is, these models

describe how the system under test is used and how

the environment around the system operates. These

models represent the tester – not the system that we

are testing. The models include testing strategies, that

is the input selection, and hand crafted output valida-

tors, or test oracles.

For example, if we are testing an application running

on a handheld mobile device, the environment

constitutes the user who uses the device and the

radio network. With an environment model you now

describe how the environment – meaning the user

and the network – operates with respect to the appli-

cation including the details about testing strategies

and output validators.

This style of modeling is quite near to tester’s traditional

thinking, after all these models essentially capture the

operations of the tester. The models, however, are

more complicated than simple graphical test case

models because of the extra expressivity.

Because the test generation algorithms for environ-

ment models are well known and easy to implement,

the tools are relatively robust and efficient. Because

these algorithms are easy to implement, there are a lot

of different tools available, both free and commercial,

and companies often create even their own tools for

generating tests from environment models.

These tools eliminate the need of manually writing

the test scripts and some of the tools even allow you

to annotate the model with requirement links thus

enabling automatic tracking of requirements, which

is a highly important and valuable feature. The funda-

mental problem, that is the test design, is still left as an

exercise to the test engineer. The test engineer needs

to manually describe the testing strategies and the

test oracle, that is, the stimuli that we need to send to

the system and the expected output from the system

under test.

System Modeling

The third main approach to model based testing is

called system model driven test generation. Here the

idea is that the model represents the actual, desired

behavior of the system itself. This means that the system

model is this mental model that the test engineers

form while going through the requirements documen-

tation now made explicit. The model describes how

the system should work – not how it should be tested.

For a moment, let’s go back to our previous example

about an application on a handheld device, where the

application operates with a user of the application and

the radio network. As opposed to other approaches,

in system modeling we focus on the behavior of the

application itself. We do not focus on how the user

uses the device or how the radio network operates. We

focus purely on the correct behavior of the applica-

tion on the device itself. We model the behavior of the

application, on a high level of abstraction, and then we

leave the problem of test design to the computer. The

7

Conformiq White Paper – Why Automate Test Design?

computer is then responsible of figuring out how the

environment outside the application operates – the

computer figures out how the user should stimulate

the application, what kind of interactions we should

see on the interface of the radio network and what

kind out precise output the application should give to

the user – the test stimuli plus what the test oracle. We

do not model the environment; the computer figures

that out from the model. Therefore, in case of system

modeling, the computer generates an environment that

drives the real system.

Creating a system model is more straightforward and a

less error-prone process than modeling the test cases

themselves or modeling an environment model. This

is simply because the mental step involved in design-

ing the testing strategies and oracles is simply omitted.

Actually the modeling can be compared to a transla-

tion problem – the goal is to translate the specification

and/or requirement documents into computer readable

format instead of creatively designing a highly compli-

cated behavior for input selection and output validation

which are tasks that human mind is not really good

at doing. Due to the fact that modeling is like encod-

ing the requirements directly into the model without

having to be creative, the model is very easy to update

when the requirements change. The model is much

easier to understand by stakeholders and use as refer-

ence for developers. This is a huge time saver in test

maintenance.

There are two, somewhat contradictory goals when

making a system model. The first is that the model

should be smaller and more abstract than the real

system – otherwise it takes too much time and money

to describe one. It should focus on the key aspects that

we want to test and should omit a lot of the details

of the SUT. The second is that it needs to be accurate

enough to capture the details that we want to test.

Comparison of the Methods

To quickly capture the similarities and differences

between the three main approaches of model based

testing, let’s take a look at the table on the next page.

In system model driven testing, we model the correct

and expected behavior of the system under test on a

high level of abstraction which undeniably requires

some technical skill. However, there is no need to

design test inputs and outputs manually as they are

automatically derived and generated. In graphical test

case design, one models the test cases which makes

modeling quite easy but offers no automation in input

or output data selection. The user needs to do this

design manually. Environment model driven

approaches model the expected environment or the

usage of the real system which again is technically

more complicated task than for example the graphical

test case design, while allows one to embedded

testing strategies directly in to the model but still

leaves the output validation as an explicit task for test

engineer.

The requirement traceability is automatically created

when using system model or environment model

driven approaches provided that the model has been

annotated properly with requirement links.

One of the fundamental differences of the three

approaches is that only system models are compo-

sitional, meaning that only the system model driven

approach allows one to construct a set of models that

are combined together to form a model of a larger

system. We will shed some extra light to this topic later

in this presentation.

By applying the graphical test modeling approach,

one can eliminate the task of writing test scripts manu-

ally like presented earlier. When adopting the environ-

ment model driven approach, one can also eliminate

the task of establishing and maintaining requirement

traceability links manually. However, only the system

model driven approach eliminates the need of con-

ducting test design explicitly plus test case mainte-

nance. With other approaches these two tasks need to

be done manually.

Finally, if we look at how the three different approaches

work with projects that target not only one revision of

the system but many, we see that the graphical test

case modeling approach suffers from similar short-

comings that the traditional test automation solutions

8

Conformiq White Paper – Why Automate Test Design?

System model driven Graphical test case design Environment model

driven

What is modeled The correct behavior of the

SUT on a high level of abstrac-

tion

The individual test cases The testing environment and

its logic

How input data is selected Automatically User defines it A testing strategy—including

input selection—is embedded

as part of the model

How the test oracle (output

validation) works

Automatically Output data at execution time

is compared to the output

data predefined in tests

Explicitly implemented in the

model

Technical complexity of

models

High Low High

How tests are traced to

requirements

Automatically Manually Automatically

Does it support composition Yes Usually no, because the actual

concrete test data would need

to match exactly

Usually no, because the

testing strategies are not

compositional

What tasks it eliminates Design test cases

Maintain test cases

Write executable tests

Maintain requirement

traceability

Write executable tests Write executable tests

Maintain requirement

traceability

What are the benefits over

multiple release cycles

High:

Model components can be

shared and linked together

Model maintenance is fast

when requirements change

Low:

Individual test cases can be

shared (only) if they can be

used as such

Test maintenance focuses on

individual test cases

Between the two other

approaches:

Testing strategies and oracles

need to be maintained by

hand

9

Conformiq White Paper – Why Automate Test Design?

do. What you need to maintain are the individual tests.

While the high abstraction level allows the same tests

to be reused when there are small changes in the

interface of the SUT, test engineers are forced to manu-

ally analyze each of the test case individually in order

to see which test cases need to be updated, which

removed and which added in order to fill the cover-

age gap when there are changes in the requirements.

Test maintenance is a major concern with graphical

test case modeling. At the other end of the spectrum

we have system modeling, where the benefits of using

system models are really high. This is because the indi-

vidual model components can be shared and linked,

therefore enabling model reuse, but also because

changes to the requirements are really easy to reflect in

to the model. Environment model driven approaches

are there in the middle between these two extremes

forcing the test engineer to maintain test strategies

and oracles by hand.

SYSTEM MODEL DRIVEN MBT PROCESS

There are certain changes in the testing process that

happens when system model driven MBT is taken into

use.

First, instead of manually designing test cases, the

test engineer writes an abstract model of the SUT. One

essentially takes the specification or requirement doc-

ument and encodes that in to a model which the test

generation tool can understand. Typically this format

is partially graphical and partially textual.

For example in the case of Conformiq Designer™, the

model is defined using Java like textual syntax and

optionally using UML state charts and class diagrams

or alternatively activity diagrams. An important part of

the modeling is to annotate the model with require-

ment identifiers to clearly show and document the

relationship between the model and the functional

requirements.

The next step, before we generate the tests, is the

selection of test selection heuristics. This is an impor-

tant part as there may well be an infinite number of

possible tests for the tool to choose from. Therefore,

we must state our goals and wishes for the test suite

that the tool should produce.

Once the test selection heuristics have been defined,

10

Conformiq White Paper – Why Automate Test Design?

one can generate test cases.

The output of the test generation is a collection of

abstract tests which are sequences of operations from

the model. The other two hugely important assets that

are automatically generated are the coverage report

and traceability matrix. The coverage report gives us

valuable information about how well the generated

test cases cover the model with respect to the cover-

age criteria that we selected. It’s important to note that

this coverage report is based on the model coverage,

not the SUT. After all, we have not even executed the

tests against the SUT at this point. The coverage report

gives us information about the quality of the test suite

and it also helps us identify model parts that are not

well tested and covered. The traceability matrix, on the

other hand, gives us the linkage between the model

and the requirements.

The third step of MBT is to export and concretize the

abstract test cases into executable and/or human

readable formats. Often this happens via some

translation or transformation tool. For example with

Conformiq Designer™, you attach a scripting backend

to your Conformiq project that then is used to export

the abstract test cases in the desired format, whether

directly executable or human readable documenta-

tion format.

The test execution happens using a test execution

environment of your choice. In the case of manual

execution, the abstract test cases are turned in to

manual test plans and detailed test steps for manual

test execution.

Finally the test execution results are evaluated using

the test execution tool logs. An alternative approach is

to import the test results directly back to the MBT tool

so that the test execution result analysis can be done

on the model level which makes it significantly easier

and efficient to figure out the problem. This step is very

similar to traditional testing processes and the goal is

to determine the cause of the fault in a case of a test

failure. The reason why the test fails may be because

the SUT was implemented incorrectly, the model was

crafted incorrectly or the requirements were incorrect

in the first place.

COMPLEMENTARY SOLUTION

As the previous section suggests, MBT should not

be seen as a competing solution with existing test

automation solutions but more of a complementary

one. As MBT aims to address the shortcomings of the

more traditional approaches, it can leverage existing

investments on test automation and can be really

seen as an additional and highly valuable piece of the

whole automation pipeline. MBT can be seamlessly

integrated with existing processes and tools, both on

the modeling side and test export backend side. On

the modeling side, one can integrate with requirement

management tools enabling one to check the com-

pleteness of requirement annotations in the model

with respect to the requirements identified in the

requirement management tool during the specifica-

tion and requirement analysis phase. On the backend

side, one has numerous different integration options

with test execution tools, test management tools, and

test documentation tools.

SYSTEM MODELING BENEFITS

We have already seen that the system model driven

approach relieves the user from designing, validating

and maintaining individual test cases. This stems from

the fact that the test design problem is automated

therefore allowing the user to focus on the correct

behavior of the system, instead of individual tests.

Improved Quality

The first huge benefit is the improved quality of the

test cases. This is because the automated approach

to test design lowers the risk of having incorrect, missed

and redundant tests. An engineer can, for example,

accidentally miss a test case that is dictated by the

requirements for example for an error handling case,

a limit value of a data parameter, or an expiration of

a rarely activated timer. The Aalgorithmic approach to

test design eliminates randomly incorrect tests. There

are fewer missing tests, because the algorithm does

not accidentally miss corner cases. There are fewer

redundant test cases because the resulting test sets

are optimized rigorously by computer and checked for

importance.

11

Conformiq White Paper – Why Automate Test Design?

An important observation is that as the tests are always

related to the requirements the quality of the gener-

ated test suite is always measurable.

Finally, the whole process itself is systematic and

repeatable.

Improved Fault Detection

The core purpose of doing testing is to find flaws. The

fault detection capabilities of MBT are increased by

lowering the risk of incorrect and missed tests. The tools

that implement the system model driven approach

have been constructed so that they optimize the tests

rigorously for coverage, non-redundancy and test

efficiency.

The second aspect is the possibility to generate different

kinds of test suites for different purposes that all target

different aspects of the system operation. It suffices to

select slightly different test selection criteria and let

tools generate new test suites. All these features make

MBT capable of producing a very good quality tests

that are used to find defects that are difficult to find

using other approaches.

This is also what we see in practice. Numerous practical

experiences, case studies and proofs of concept, show

that MBT is as good as or better in finding defects

than manual testing. This is not surprising as when

the system gets more complicated, the rigorous and

comprehensive test design task becomes simply too

overwhelming a task for the human brain. Computer is

much better in this kind of endeavor.

Reduced Cost and Time

The time and costs can also be reduced by applying

system model driven MBT. This stems from the fact

that creating a system model is straightforward and less

error prone than describing the tests themselves. The user

makes the mental model explicit instead of inventing

test cases based on that. This, increases the quality of

the end result, but also reduces the time.

One model can also be used to generate multiple dif-

ferent test suites for different purposes. One essentially

gets all the different test suites for free using a single

model.

Time savings during the model maintenance phase

really gets highlighted, because model maintenance is

significantly easier and more efficient than maintaining

individual test cases. We will talk more about mainte-

nance aspect later in this presentation.

Finally, the test failure analysis is often easier and

faster. One can, for example, inspect the path that the

test took through the model in order to provide more

understanding of the circumstances under which the

problem was triggered. In some cases, it is even pos-

sible to import the test execution results back to the

MBT tool for further analysis. Another thing is that

MBT tools are often capable of generating the shortest

possible path to the test failure, thus making the test

analysis simpler. In addition, the tests are generated

in a consistent fashion so the failure reports also tend

to be more consistent. All this additional information

makes it easier to understand the tests, the reasons for

their failure, and most importantly to find and fix the

problem.

Improved Traceability

Traceability is the ability to relate tests to the model,

tests to the test selection criteria and tests to the

requirements.

Requirements traceability means tracing your func-

tional requirements through your system design and

test. From the test design perspective this means

that you should be able to explain how your test cases

and individual test steps are related to those functional

requirements that have been articulated.

Implementing requirements traceability has many

benefits:

1) It helps to ensure that none of the functional require-

ments has been ignored in test case design.

2) It helps to explain tests and gives rationale why

tests were generated. Requirement traceability helps

in understanding tests, as the tests are linked to the

12

Conformiq White Paper – Why Automate Test Design?

requirements they are supposed to test.

3) It helps in post-execution analysis of tests to pin-

point which feature was actually malfunctioning.

Maintenance

The maintenance becomes an important factor for

projects that targets not only a single revision of

the system but many revisions. Traditionally when

requirements change, a significant amount of effort

is required to analyze and update the existing test

suites. You need to go through every test case and see

whether the test case and data are still valid, whether

you should modify them in some way, or whether you

should eliminate the test altogether. In addition, you

need to decide whether you need to introduce new

tests for bridging the coverage gap and with what

kind of test cases.

With the system model driven approach, the mainte-

nance efforts are significantly reduced. This is because

the model is typically smaller than the test suites and

because the requirement updates can often be easily

reflected into the model.

After we have made the updates to the model, a new

test suite can be automatically generated. When

regenerating the test suite, the tools establishes an

incremental traceability and can directly report which

of the test cases were removed, which were added and

which became redundant.

Prospect of Reuse

Related to the model maintenance, one of the benefits

of system model driven testing is derived from the

ability of reuse. Reuse, also in the context of test gen-

eration, offers great rewards by allowing one to save time

and money by reducing the amount of redundant work.

The possibility for reuse exists because system models

are compositional and because system models

are often expressed with languages that offer direct

support for reuse. For example, Java like notation of

Conformiq Designer™ allows one to reuse models via

concepts familiar from object oriented paradigms

such as inheritance, delegation, communication and

parameterization.

Model composition is an important feature really only

available with system models because it allows one to

reuse the same models for generating function, compo-

nent, system and end-to-end tests. Model composition

means that you can take multiple smaller models and

combine them into one bigger model. This allows you

to first model and test smaller features independently

and then later combine the models and then test that

the features also work as expected when combined

together.

Model composition in addition enables early detec-

tion of interoperability issues where components,

even if independently operating correctly, don’t work

correctly when connected together. Interoperability

can be tested essentially for free when one has the

models of the components to be connected together.

Improving Requirements

Finally, one quite unexpected benefit of model based

testing is that the mere act of modeling the system

behavior often improves the quality of the require-

ments. That is a lot of defects can already be spotted

in the model of the specifications and requirements

before even writing a single line of code. The require-

ments often contain ambiguities, omissions and

contradictions. As one writes a model of the system

behavior, one often raises a lot of questions regarding

the requirements, so already the modeling process can

exposes a lot of issues with the requirements.

Actually when you think of it, this should not come as

such a surprise. After all, system modeling involves the

development of small high-level prototype of the real

system and it has been long known that prototyping is

a good and efficient way of finding requirement bugs.

BENEFITS DO COME WITH A PRICE…

As with any disruptive new technology, there are some

obstacles that hinder deployments. These obstacles,

luckily enough, can be overcome by training and

experience.

13

Conformiq White Paper – Why Automate Test Design?

The first practical issue is that system modeling requires

a different skill set than manual test design. System

models are abstract small programs, therefore the test

engineer must be able to abstract and design programs

and this requires programming skills. There are ways

of minimizing the amount of “coding” that one needs

to do in order to craft a model but the fact is that all

the real applications are computational processes and,

with what we currently know, the only known efficient

way of describing a computational process is in terms

of a programming language. This directly implies that

the real system models are small abstract programs

themselves defined using a programming language.

But one should not think of this as a shortcoming or

a disadvantage of the solutions. It gives you a very

powerful way of describing your system in a concise

and sound fashion. And also quite often specifications

and requirements are written in an informal notation

that can be quite naturally translated in to program or

model code – take business rules as an example. They

are quite often described in pseudo code, decision

tables or trees. Or take a protocol specification – you

see a lot of state charts and pseudo code fragments, all

which can be quite easily translated into “code”.

Another thing is that test engineers may feel alienated

modeling the system behavior as that does not involve

the same thinking process as you typically have when

doing testing. You don’t really think about testing

when you are modeling so, in a sense, the role of the

tester moves a bit closer to the developer or designer

role. This, especially with senior test engineers and

designers who have worked for long time on more

traditional approaches to testing, manifests itself in

such a fashion that they will use system model driven

approaches to capture the test scenarios and test

cases themselves, instead of modeling the expected

system behavior. There is nothing wrong in using the

tools in this way, per se, but one would gain more

of the benefits by trying to adjust to the new way of

thinking and to the paradigm shift that system model-

ing introduces, ultimately by modeling the correct and

expected system operation instead. Otherwise, one

may not experience the great benefits that system

modeling has to offer and one needs to settle on only

those benefits that, for example, environment model-

ing approach has to offer.

A pragmatic issue that test engineers may run into is

the limitation of the tools themselves. This is because

test generation from system models is computationally

an extremely difficult task, therefore the test engineers

may devise models that are beyond the capabilities of

the tools – the tools simply choke when given such a

model. Therefore, in certain cases the test engineers

may need to gain extra knowledge about the tools

and the algorithms that they apply in order to figure

out how to avoid developing a model that kills the

tool. Scalability issues are something that, for example,

Conformiq takes very seriously and constantly invests

a lot into research and development of more efficient

algorithmic approaches to automated test design. But,

here again, one should remember that as test engi-

neers and designers already have some mental model

of the system’s correct operations in their minds, this

means that constructing the test cases is very difficult

for a human also. And even worse, the human mind is

horrible in this kind of creative, combinatorial exercise.

Thus it is beneficial to model the system behavior.

But there are other factors as well.

Especially when test engineers are exposed to such

a technology for the first time, they may be skepti-

cal about the tool capabilities: Can a computer really

design tests as good as I can? Our systems are so

complicated that is it really possible to automate the

test design? These questions can only be answered by

taking a deep dive and see what the tools can deliver.

Practical experiences from numerous industry seg-

ments where the system modeling approach has been

applied to vastly different problems show that they

can. They really can. It’s not going to take away your

job. Instead it helps you to focus on more important

things and makes you more productive.

But it is also a leap from the comfort zone for the

project management. With new philosophy and tech-

nology in place, you need to adjust your ways of plan-

ning but also tune the way that you measure progress.

There are a lot of best practices collected over the years

and lot of documentation available on how to address

these problems. Most of the tool vendors provide

trainings around these areas and are more than happy

to share some of their best practices.

14

Conformiq White Paper – Why Automate Test Design?

CONCLUSIONS

As we have seen, traditional test automation focuses

mainly on two aspects; test management and test exe-

cution. With these solutions, the process of test design,

that is the process of deciding how to test, what to test

and what not to, is left as a manual activity. We have

seen that manual test design introduces a lot of risks

and it takes a lot of time, especially when the require-

ments change.

System model driven test generation is an effective

and complementary way of addressing the shortcom-

ings of existing test automation.

First, it automates the design of functional test cases

to reduce the design cost and to increase the quality.

Second, it reduces the maintenance costs of the tests.

And third, it automatically generates coverage reports

and traceability information from requirements to the

tests and back.

System model driven test generation offers signifi-

cant benefits in terms of improved quality, improved

SUT fault detections, improved traceability, improved

maintenance, improved model reuse, reduced cost

and time, and improved requirements.

MBT is a more sophisticated approach to testing than

earlier generations of testing tools. Operating with

these tools requires a different mind and skill set than

more traditional testing tools. However, the practice

shows that these hurdles can be overcome by proper

training and experience plus a willingness to make the

change succeed.

And once you pass these initial hurdles and you start

to see the benefits, you really do not want to go back.

ABOUT CONFORMIQ

Originally established in 1998, Conformiq is a leading

solutions provider for automated test design and

advanced model-based testing, dedicated to improv-

ing test design processes within software-intensive

product companies operating in business-, mission-

and life-critical industry segments.

Conformiq Designer™ is the company’s fourth-genera-

tion test design tool, built upon a decade of advanced

basic and applied research as well as testing and test

design experience.

Privately held, independent and known for extraordi-

narily responsive customer service, Conformiq is the

partner of choice for companies who are ready to step

ahead of the curve.

For more information about Conformiq and the

company’s software and services, please visit

www.conformiq.com.

Copyright © Conformiq Inc. and its subsidiaries 2013. All Rights Reserved. All information in this publication is provided for informational

purposes only and is subject to change without notice. Conformiq, Conformiq Designer, Conformiq Modeler, and Automated Test Design are

trademarks of Conformiq Inc. Other trademarks and registered trademarks belong to their respective owners.

15

Conformiq White Paper – Why Automate Test Design?

12930 Saratoga Ave Ste B9

Saratoga, CA 95070

USA

Tel: +1 408 898 2140

Fax: +1 408 725 8405

Westendintie 1

02160 Espoo

FINLAND

Tel: +358 10 286 6300

Fax: +358 10 286 6309

Stureplan 4C

SE-11435 Stockholm

SWEDEN

Tel: +46 852 500 222

Fax: +358 10 286 6309

Maximilianstrasse 35

80539 Munich

GERMANY

Tel: +49 89 89 659 275

Fax: +358 10 286 6309

www.conformiq.com

Automated Test Design™

